

Converting from LONG RAW to BLOB in an
ArcSDE® for Oracle® geodatabase

An ESRI ® Technical Paper • May 2007

Copyright © 2003 ESRI
Copyright © 2007 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This
work is protected under United States copyright law and other international copyright
treaties and conventions. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording,
or by any information storage or retrieval system, except as expressly permitted in
writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI,
380 New York Street, Redlands, CA 92373-8100, USA.

The information contained in this document is subject to change without notice.

ESRI, the ESRI globe logo, ArcSDE, ArcGIS, ArcMap, ArcCatalog, www.esri.com, and
@esri.com are trademarks, registered trademarks, or service marks of ESRI in the
United States, the European Community, or certain other jurisdictions. Other companies
and products mentioned herein may be trademarks or registered trademarks of their
respective trademark owners.

ESRI Technical Paper

Converting from LONG RAW to
BLOB in an ArcSDE for Oracle
geodatabase

An ESRI Technical Paper

Contents

Quick-Start Guide 1
What ArcSDE Data Is Stored in a LONG RAW Column 3
Understanding the Oracle BLOB Data Type 3
Modifying the DBTUNE Parameters to Store BLOB Columns 6

Data Type DBTUNE Storage Parameters 6
Using the SQL ALTER TABLE Statement 9
Using the SQL TO_LOB Function 11
Exporting to an ArcGIS File Geodatabase 13
Using sdeexport and sdeimport 13
Using estimate_blob_storage 14

The estimate Stored Procedure 18
The estimate_business_table Stored Procedure 18
The estimate_layer Stored Procedure 19
The estimate_raster Stored Procedure 20

Using convert_lr_to_blob 20
The convert Stored Procedure 25
The convert_business_table Stored Procedure 25
The convert_layer Stored Procedure 26
The convert_raster Stored Procedure 27

Conversion Scenarios 27

ESRI Technical Paper 1

Converting from LONG RAW to
BLOB in an ArcSDE for Oracle
geodatabase

Oracle has announced the deprecation of the LONG RAW data type with
the upcoming 11g release of their database software. While it is not known
what support will be available for the LONG RAW data type when 11g is
released, it is possible that LONG RAW columns created prior to the 11g
release will continue to be supported by the Oracle database. However,
some ESRI customers have experienced unexplained ORA-03106 errors
while using data stored in LONG RAW data types after upgrading to
Oracle 10g. This document has been written to assist users who want to
convert LONG RAW columns to Binary Large Object (BLOB) columns.

Always perform a backup of the database before making any
modifications.

Quick-Start Guide If you already have an understanding of ArcSDE data storage and Oracle BLOB
technology, you will not need to digest the contents of this document in detail. Perhaps
you just want a limited set of steps that will guide you through the conversion of the
LONG RAW columns in your ArcSDE tables to a BLOB data type. Those steps are
provided here with references to the detailed information within this document, should
you need to review it.

1. First, estimate the storage space that will be required to store the tables and large

object (LOB) segments after they have been converted. To obtain an accurate

estimate, install and execute the stored procedures of the estimate_blob_storage

PL/SQL package included with this document. For information on how to install

and use the estimate_blob_storage package, refer to the section Using

estimate_blob_storage.

2. Based on the space estimates from the previous step, extend existing tablespaces

or create new tablespaces that will store the tables containing the BLOB

columns and the LOB segments. Note that the LOB index is typically not used

and, therefore, will not store data. However, be aware that it will always be

created with the LOB segment and occupy the initial space allocation. For a

better understanding of how binary data is stored in the BLOB column, refer to

the section Understanding the Oracle BLOB Data Type in this paper.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 2

3. Update the DBTUNE parameters to create and store binary data in BLOB

columns rather than LONG RAW columns. The following DBTUNE storage

parameters are listed with their BLOB storage values:

ATTRIBUTE_BINARY BLOB
GEOMETRY_STORAGE SDELOB
RASTER_STORAGE BLOB

B_STORAGE "PCTFREE 0 INITRANS 4
 TABLESPACE BIZZTABS
 LOB (DOCUMENT) STORE AS
 (TABLESPACE BIZZ_LOB_SEGMENT
 CACHE PCTVERSION 0)"

A_STORAGE "PCTFREE 0 INITRANS 4
 TABLESPACE BIZZTABS
 LOB (DOCUMENT) STORE AS
 (TABLESPACE BIZZ_LOB_SEGMENT
 CACHE PCTVERSION 0)"

F_STORAGE "PCTFREE 0 INITRANS 4
 TABLESPACE VECTOR
 LOB (POINTS) STORE AS
 (TABLESPACE VECTOR_LOB_SEGMENT
 CACHE PCTVERSION 0)"

BLK_STORAGE "PCTFREE 0 INITRANS 4
 TABLESPACE RASTER
 LOB (BLOCK_DATA) STORE AS
 (TABLESPACE RASTER_LOB_SEGMENT
 CACHE PCTVERSION 0)"

AUX_STORAGE “PCTFREE 0 INITRANS 4
 TABLESPACE AUXTABS
 LOB (OBJECT) STORE AS
 (TABLESPACE AUXTABS
 CACHE PCTVERSION 0)”

In the above parameters, you will need to substitute the names of your

tablespaces and add the additional Oracle storage parameters that are unique to

your installation.

Refer to the Modifying the DBTUNE Parameters to Store BLOB Columns

section for a more detailed explanation of these parameters. Also refer to the

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 3

ArcGIS® online help topics: The dbtune file and the DBTUNE table, DBTUNE

configuration keywords, and DBTUNE configuration parameter names-

configuration string pairs. The help can be accessed from the ESRI support site,

http://support.esri.com.

4. Convert the LONG RAW columns to BLOB. Install and execute the stored

procedures of the sde_metadata and convert_lr_to_blob PL/SQL packages.

Refer to the section Using convert_lr_to_blob for more information.

What ArcSDE Data
Is Stored in a LONG
RAW Column

LONG RAW and BLOB are Oracle data types that store binary data. Binary data ranges
from an executable program, a raster image, a compressed geometry string, or even
readable text such as an XML document. The forms of binary data stored by ArcSDE are
vector, raster, XML, and user defined.

The vector data—otherwise known as geometry or shape data—consists of a compressed
string of vertices that are stored in a feature class. The size of the vector data relies on its
type. It can be as small as a single point, which will occupy approximately 12 bytes, or
exceed many kilobytes such as a multipolygon covering a large area of interest.

An ArcSDE 9.2 feature class may be stored in one of five different storage formats: the
SDEBINARY, SDELOB, ST_GEOMETRY, OGCWKB, or SDO_GEOMETRY. The
SDEBINARY format stores a LONG RAW data type and has been the traditional default
storage type.

Feature classes stored as SDEBINARY have a feature table with a POINTS column
defined as LONG RAW.

At ArcSDE 9.2, raster data can be stored as either a LONG RAW, BLOB, or
SDO_GEORASTER data type. Prior to ArcSDE 9.2, the default storage type for raster
data was LONG RAW. However, with the 9.2 release, the default storage was changed to
BLOB.

Whenever raster columns are stored as LONG RAW, the raster blocks table contains a
BLOCK_DATA column and a raster auxiliary table contains an OBJECT column that are
both defined as LONG RAW.

ArcSDE also stores XML data in a BLOB column; however, since you have never been
able to store this data as LONG RAW, you do not need to worry about converting it.

ArcSDE allows you to add your own binary columns to the business tables of table
classes, feature classes, and raster catalogs. Prior to ArcSDE 9.2, the user-defined binary
columns were stored as LONG RAW. With the release of ArcSDE 9.2, the default was
changed to BLOB.

Understanding the
Oracle BLOB Data
Type

The word BLOB is a database management system (DBMS) industry acronym for binary
large object. BLOB columns were implemented several years ago by Oracle Corporation
to replace the aging LONG RAW technology for storing binary data.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 4

The LONG RAW column has a very simple structure: it simply exists in row with the
data of the other columns. The BLOB column, on the other hand, has a complex
structure.

The architecture of the BLOB data type is divided into three basic components: the
BLOB column, the LOB segment, and the LOB index. The BLOB column stores the
LOB locator (36 bytes) and binary data in row if it is less than 3,965 bytes and in-row
storage has not been disabled for the column. (Note: Tests by ESRI have shown that
allowing storage in row provides the best performance, so you are advised not to disable
in-row storage.) If the binary data exceeds 3,964 bytes, the in-row storage space of the
BLOB column is not allocated, and the LOB locator references the binary data stored in
the LOB segment.

Therefore, a value stored in a BLOB column with in-row storage enabled will always be
at least 36 bytes (the space allocated to the LOB locator) and may be as large as 4,000
bytes (the combined space allocated to the LOB locator and the maximum space that can
be allocated to binary data stored in row).

The LOB segment is divided into chunks. Chunks must be a multiple of the Oracle data
block size. For example, if the data block size is 8K, the LOB segment can be created
with a minimum chunk size of 8K. If the length of the data stored within the LOB
segment is 5,000 bytes, it will be stored in the LOB segment since it exceeds 3,964 bytes
and the chunk size is 8K or 8,192 bytes. In this case, 3,192 bytes of the LOB segment
chunk will remain unused. Transferring data from LONG RAW to BLOB can result in
more space being required—perhaps as much as a 30 percent increase due to the unused
space in the LOB segment. This is unavoidable if your data exceeds the 3,964 byte in-
row storage threshold of the BLOB column.

The 8K chunk size experiences the best I/O performance while wasting the least amount
of space. The 16K chunk size will waste more space than an 8K chunk size. Therefore, to
avoid the loss of space, you are advised to either re-create the database that currently has
a 16K data block size with an 8K data block size or, if that is not possible, create LOB
segments in tablespaces that have been created with an 8K block size. To do that, you
will need to allocate an 8K buffer cache in the Oracle system global area (SGA).

Chunk sizes of 4K and 2K have been found to waste less space, but the increase in I/O
cost does not warrant using them.

The LOB index is only used if the number of chunks addressed by the LOB locator
exceeds 12; otherwise, the first 12 chunks are addressed by the LOB locator.

In the figures provided below, the three possible storage cases of binary data stored in a
BLOB column are presented. In the first case, figure 1 illustrates binary data that is less
than the 3,965 byte in-row storage threshold. If in-row storage is not disabled for the
BLOB column, the LOB segment and the LOB index are not used. Typically, this will
result in a faster fetch of the BLOB data due to the reduced number of I/O operations
since Oracle does not need to access the LOB segment or the LOB index.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 5

Figure 1

In this case, the binary data is less than 3965 bytes and will fit in row. Since the data is not stored in the LOB

segment, neither the LOB segment nor the LOB index are referenced for this row of data.

Figure 2 illustrates the second case, in which the binary data is larger than 3,964 bytes
and cannot fit in row. Therefore, the LOB locator references the binary data that is stored
in the LOB segment. Since the binary data does not occupy more than 12 chunks in the
LOB segment, the LOB locator stores its addresses. In this case, the LOB index is not
used.

Figure 2

In this case, the binary data exceeds the in-row threshold of 3,964 bytes and must be stored in the LOB

segment. However, since it occupies only 10 chunks, it can be referenced directly from the LOB locator, which

can address up to 12 chunks.

The final case, figure 3, illustrates that the binary data is so large that the LOB index is
required. In this case, the binary data exceeds the in-row storage plus requires more
than12 chunks within the LOB segment to store it. For data this large, the LOB locator
references the LOB index to obtain the location of the chunks within the LOB segment.
This case is extremely rare for vector data and can be avoided for raster data.

LOB locator

8K 8K 8K 8K 8K 8K 8K 8K 8K 8K

LOB segment

BLOB column
LOB index

In-row BLOB storage LOB locator

LOB segment

BLOB column

LOB index

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 6

Figure 3

In this case, the binary data exceeds the in-row threshold of 3,964 bytes and must be stored in the LOB

segment. The binary data is so large that it must occupy 13 chunks; this must be addressed by the LOB index

since the LOB locator can only address up to 12 chunks. In this case, the LOB locator will reference the LOB

index to obtain the address of the binary data's chunks stored in the LOB segment.

Modifying the
DBTUNE
Parameters to Store
BLOB Columns

The storage parameters of the DBTUNE table control how ArcGIS creates tables and
indexes in Oracle. Some of the storage parameters also determine which data type will be
used when a table is created.

For more information on how to maintain the DBTUNE table, consult the ArcGIS
Desktop Help. Within the help system, you will find topics explaining how to organize
the storage parameters into keywords as well as how to edit the values of the storage
parameters.

Data Type DBTUNE
Storage Parameters

The ArcSDE DBTUNE storage parameters, GEOMETRY_STORAGE,
RASTER_STORAGE, and ATTRIBUTE_BINARY, determine which Oracle data type
will be used to store ArcSDE data.

Note that the ArcSDE 9.1 RASTER_BINARY_TYPE storage parameter has been
replaced at ArcSDE 9.2 with the RASTER_STORAGE parameter. If you currently have
ArcSDE 9.1 installed, substitute all references to RASTER_STORAGE with
RASTER_BINARY_TYPE. The RASTER_BINARY_TYPE parameter accepts only two
values: LONGRAW and BLOB.

The GEOMETRY_STORAGE parameter controls the storage of vector data that is stored
in a feature class. The RASTER_STORAGE parameter controls the storage of raster data
that is stored in a raster dataset, raster catalog, or raster attribute. Finally, the
ATTRIBUTE_BINARY parameter controls the storage of all other binary data that is not
vector or raster. (Note: XML documents are always stored in a BLOB column, so there is
no need to worry about converting them.)

The default value for the GEOMETRY_STORAGE parameter would create a feature
table POINTS column of type LONG RAW. With the release of ArcSDE 9.2, the default
value of RASTER_STORAGE and ATTRIBUTE_BINARY was changed to create a

LOB locator

8K 8K 8K 8K 8K 8K 8K 8K 8K 8K

LOB segment

BLOB column LOB index

8K 8K 8K

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 7

column of type BLOB in compliance with Oracle's decision to begin deprecating the
LONG RAW data type.

To create BLOB columns, the parameters need to be set as follows within a given
DBTUNE keyword:

GEOMETRY_STORAGE SDELOB
RASTER_STORAGE BLOB
ATTRIBUTE_BINARY BLOB

ESRI recommends the following LOB storage parameters for vector and raster data.

• Always enable in-row storage because most geographic information system
(GIS) data fits within the 3,964 bytes in-row threshold. Performance is best
when data is stored in row.

• Enable cache since ArcSDE data is frequently read.
• Since ArcSDE does not perform updates on BLOB data but instead performs

only inserts and deletes, set the PCT_VERSION to 0 as there is no need to
maintain older versions of the data within the LOB segment.

• You should not use a chunk size less than 8K. Chunk sizes of 2K and 4K
increase the amount of I/O as the Oracle server process must fetch more chunks.
You will probably find that an 8K chunk size will waste less space than 16K. If
you use a chunk size of 2K or 4K, you will find that it wastes less space, but
tests have found that the display time for most raster and vector data increases
dramatically over storing in an 8K or 16K chunk size. Since the chunk size must
always be a multiple of the data block size, the best data block size to use for
storing GIS data in BLOBs is 8K.

The following is an example of how the raster DBTUNE storage parameters have been
modified to accommodate a raster blocks table stored as a BLOB data type.

RASTER_STORAGE "BLOB"
BLK_STORAGE "PCTFREE 0 INITRANS 4 TABLESPACE RASTER
 LOB (BLOCK_DATA) STORE AS
 (TABLESPACE RASTER_LOB_SEGMENT
 CACHE PCTVERSION 0)"

AUX_STORAGE "PCTFREE 0 INITRANS 4 TABLESPACE RASTER
 LOB (OBJECT) STORE AS
 (TABLESPACE RASTER
 CACHE PCTVERSION 0)"

If the raster block pixel data is less than 3,965 bytes, it will be stored within the
BLOCK_DATA column in the RASTER tablespace. However, if it exceeds this
threshold, it will be stored in the LOB segment in the RASTER_LOB_SEGMENT
tablespace. The LOB index is only used if the number of chunks exceeds 12. This is
unlikely to happen for ArcSDE data. Consider a LOB segment with a chunk size of 8K.
Before the LOB index is used, the ArcSDE binary data will need to exceed 96K.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 8

The following is an example of how the vector DBTUNE storage parameters have been
modified to accommodate the feature table stored in a BLOB data type:

GEOMETRY_STORAGE "SDELOB"
F_STORAGE "PCTFREE 0 INITRANS 4 TABLESPACE VECTOR
 LOB (POINTS) STORE AS
 (TABLESPACE VECTOR_LOB_SEGMENT
 CACHE PCTVERSION 0)"

If the feature’s binary data is less than 3,965 bytes, it will be stored within the POINTS
column in the VECTOR tablespace. However, if it exceeds this threshold, it will be
stored in the LOB segment in the VECTOR_LOB_SEGMENT tablespace.

ATTRIBUTE_BINARY "BLOB"
B_STORAGE "PCTFREE 0 INITRANS 4 TABLESPACE BIZZTABS
 LOB (DOCUMENT) STORE AS
 (TABLESPACE BIZZ_LOB_SEGMENT
 CACHE PCTVERSION 0)"
A_STORAGE "PCTFREE 0 INITRANS 4 TABLESPACE BIZZTABS
 LOB (DOCUMENT) STORE AS
 (TABLESPACE BIZZ_LOB_SEGMENT
 CACHE PCTVERSION 0)"

If the business table’s binary data is less than 3,965 bytes, it will be stored within the
business table’s BLOB column in the BIZZTABS tablespace. However, if it exceeds this
threshold, it will be stored in the LOB segment in the BIZZ_LOB_SEGMENT
tablespace. In this example, the BLOB column is called DOCUMENT. If the above
B_STORAGE DBTUNE parameter is used to create a table that does not have a
DOCUMENT column, the following error will be returned by Oracle:

ORA-00904: "DOCUMENT": invalid identifier

Therefore, it is not wise to add B_STORAGE or A_STORAGE parameters referencing a
specific BLOB column to the DEFAULTS keyword, since the business table must
contain these columns. Instead, you create separate DBTUNE keywords and add these
storage parameters to the keywords. The keyword that contains the storage parameter is
referenced during the creation of the table. It should also be noted that storage parameters
of the DEFAULTS keyword are used if they are not included with a specific keyword.
Due to this fact, it is not necessary to add a particular storage parameter within a keyword
if its configuration string is identical to the same DEFAULTS keywords storage
parameter. For instance, if all the storage parameters except B_STORAGE and
A_STORAGE of a new keyword called ROADS have the same configuration string as
those of the DEFAULTS keyword, you would only need to create the B_STORAGE and
A_STORAGE parameters under the ROADS keyword. All other storage parameters
would be read from the DEFAULTS keyword since they were not found in the ROADS
keyword.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 9

Using the SQL
ALTER TABLE
Statement

As of Oracle9i, the ALTER TABLE statement can directly convert a LONG RAW
column to a BLOB column. This section explains the basic methodology of how you
would use the ALTER TABLE statement to convert a LONG RAW column of any of
your ArcSDE tables to a BLOB column.

The PL/SQL convert_lr_to_blob package included with this document uses the ALTER
TABLE command to convert LONG RAW columns to BLOB. The stored procedure
package also fetches the storage parameters from the DBTUNE table and updates the
ArcSDE metadata. For more information on this package, refer to the section Using
convert_lr_to_blob.

If you choose to convert ArcSDE tables from LONG RAW to BLOB by using the
ALTER TABLE statement directly you should update the ArcSDE metadata by installing
and the sde_metadata package included with this document. The package is installed by
the owner of the geodatabase, which by default is the SDE user. You may grant the
execute privilege to other users.

Execute the update_metadata stored procedure of this package to update the metadata
after you have converted a LONG RAW column to BLOB. This stored procedure will
only change the metadata if it detects that it is not synchronized with the current
description of the table. The stored procedure requires two arguments: the qualified table
name and the type. The type argument has three possible values: ‘BUSINESS’,
‘LAYER’, and ‘RASTER’. If you converted a binary column of the business table
MYTABLE owned by DAN, the stored procedure is executed as follows:

SQL> exec
sde_metadata.update_metadata(‘DAN.MYTABLE’,’BUSINESS’);

If you converted the binary column of a feature table for the feature class MYTABLE
owned by DAN, the stored procedure would be executed as follows:

SQL> exec
sde_metadata.update_metadata(‘DAN.MYTABLE’,’LAYER’);

If you converted the binary column of a raster blocks table for the raster dataset
MYTABLE owned by DAN, the stored procedure would be executed as follows:

SQL> exec
sde_metadata.update_metadata(‘DAN.MYTABLE’,’RASTER’);

The basic syntax of the ALTER TABLE statement to convert a LONG RAW column to a
BLOB column looks like the following statement:

ALTER TABLE SDE_BLK_10 MODIFY (BLOCK_DATA BLOB);

Using this basic syntax, Oracle will create three new segments within the tablespace in
which the SDE_BLK_10 table was created, and it will remove the original segment that
contained the LONG RAW column. Also, Oracle will invalidate all indexes on the table

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 10

following this type of modification. In this case, the unique index SDE_BLK_10_UK
will be rebuilt with the following syntax:

ALTER INDEX SDE_BLK_10_UK REBUILD PARALLEL;

The above ALTER TABLE syntax is useful if the table is relatively small and you are not
concerned about space. However, for large tables, the syntax needs to be more
sophisticated, because you need to direct the placement of the three new segments,
allowing you to recover the space vacated by the old segment. Therefore, for the purposes
of this document, consider all tables containing LONG RAW columns to be large so that
you need to recover the space following the conversion.

Let’s assume that the following conditions exist:

1. The SDE_BLK_10 table contains the BLOCK_DATA column that is stored as a
LONG RAW data type, and it has been created in the RASTER_LONG
tablespace.

2. The RASTER_LONG tablespace has 20 data files assigned to it on 4 different
logical drives. At the end of the conversion process, you want to be able to drop
the RASTER_LONG tablespace, delete the 20 data files assigned to it, and reuse
the disk space for something else.

3. Following the conversion, the segments of the SDE_BLK_10 table must be
stored in the RASTER_BLOB and the RASTER_LOB_SEGMENT tablespaces.

First, disable logging on the SDE_BLK_10 table. Doing so significantly reduces the
amount of redo generated during the conversion process.

ALTER TABLE SDE_BLK_10 NOLOGGING;

Next, alter the table to convert the BLOCK_DATA column from LONG RAW to BLOB.

ALTER TABLE SDE_BLK_10 MODIFY (BLOCK_DATA BLOB)
LOB (BLOCK_DATA) STORE AS
(TABLESPACE RASTER_LOB_SEGMENT NOCACHE NOLOGGING PCTVERSION
0);

This statement includes the LOB parameters that determine the LOB segment and LOB
index to be stored in the RASTER_LOB_SEGMENT tablespace. Initially, caching and
logging are disabled during the conversion to keep redo activity to a minimum. The space
reserved for older versions of the LOB in the LOB segment is set to a minimum since
ArcSDE never performs an update on this type of LOB data but instead performs a delete
and inserts a new one if a change is required. For this reason, PCTVERSION is set to 0.

Following the conversion of the LONG RAW to a LOB column, the SDE_BLK_10 table
remains in the RASTER_LONG tablespace. However, the LOB segment and the LOB
index of the new LOB column were created in the RASTER_LOB_SEGMENT
tablespace. Since one of the conditions is to remove the RASTER_LONG tablespace and
recover the space it occupies, the SDE_BLK_10 table must be moved to the

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 11

RASTER_BLOB tablespace. The following statement is used to move the SDE_BLK_10
table to the RASTER_BLOB tablespace:

ALTER TABLE SDE_BLK_10 MOVE TABLESPACE RASTER_BLOB;

Now, assuming that no other segments from other tables and indexes in the database
occupy the RASTER_LONG tablespace, it is possible to drop the tablespace and delete
the data files assigned to it.

As a final step, caching and logging are enabled for the SDE_BLK_10 table and the
index on the table, which was invalidated by the conversion process, is rebuilt.

ALTER TABLE SDE_BLK_10
MODIFY LOB (BLOCK_DATA) (CACHE);

ALTER TABLE SDE_BLK_10 LOGGING;

ALTER INDEX SDE_BLK_10_UK REBUILD PARALLEL;

Using the SQL
TO_LOB Function

Another way to convert a LONG RAW column to a BLOB column is to use the Oracle
TO_LOB function. Using the TO_LOB function, you create a new table with a BLOB
column and load the contents of the original table containing the LONG RAW column
into it. You then drop the original table and rename the new table to the original table
name. The indexes and constraints on the table will need to be re-created.

The following is an example of how to convert the raster blocks table using the TO_LOB
function. You will create the SDE_BLK_10 table with a LOB column as
SDE_BLK_10_NEW. To do this, obtain the CREATE TABLE statement for the table
from the DBMS_METADATA.GET_DDL stored procedure. If you are using SQL*Plus,
you can use the SPOOL command to send the output of the stored procedure to a SQL
script file, which you can modify and execute to create the new LOB version of the table.

SPOOL create_block_table.sql
SELECT DBMS_METADATA.GET_DDL('TABLE','SDE_BLK_10')
FROM DUAL;
SPOOL OFF

The following CREATE TABLE statement creates the new table with a BLOB column.
In reality, the CREATE TABLE statement generated by the GET_DDL stored procedure
would also create a unique index constraint on the integer columns and contain a number
of storage parameters. You should remove the unique index constraint and modify the
storage parameters so that the table, LOB segment, and LOB index end up in the
appropriate tablespaces.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 12

 CREATE TABLE SDE_BLK_10_NEW
(RASTERBAND_ID NUMBER(38) NOT NULL,
 RRD_FACTOR NUMBER(38) NOT NULL,
 ROW_NBR NUMBER(38) NOT NULL,
 COL_NBR NUMBER(38) NOT NULL,
 BLOCK_DATA BLOB)

TABLESPACE RASTER_BLOB LOB (BLOCK_DATA) STORE AS
(TABLESPACE RASTER_LOB_SEGMENT CACHE PCTVERSION 0);

Insert the records of the original SDE_BLK_10 table into the new SDE_BLK_10_NEW
table using the TO_LOB function.

 INSERT INTO SDE_BLK_10_NEW
SELECT RASTERBAND_ID, RRD_FACTOR, ROW_NBR, COL_NBR,
 TO_LOB(BLOCK_DATA)
FROM SDE_BLK_10;

Now drop the SDE_BLK_10 table and rename the new table to the old name.

 DROP TABLE SDE_BLK_10;

RENAME SDE_BLK_10_NEW TO SDE_BLK_10;

Finally, create the required unique index on the table's integer columns. This is a
simplified version of the statement. In reality, you would also include storage parameters
compliant with the requirements of your database. These storage parameters could be
obtained from the output of the GET_DDL stored procedure used to generate the
CREATE TABLE statement.

 CREATE UNIQUE INDEX SDE_BLK_10_UK ON SDE_BLK_10
(RASTERBAND_ID, RRD_FACTOR, ROW_NBR, COL_NBR)
TABLESPACE RASTER_INDEX;

If you choose to convert ArcSDE tables from LONG RAW to BLOB by using the
TO_LOB function, you should update the ArcSDE metadata by installing and running the
sde_metadata package included with this document. The package is installed by the
owner of the geodatabase, which, by default, is the SDE user. You may grant the execute
privilege to other users.

Execute the update_metadata stored procedure of this package to update the metadata
after you have converted a LONG RAW column to BLOB. This stored procedure will
only change the metadata if it detects that it is out of sync with the current description of
the table. The stored procedure requires two arguments: the qualified table name and the
type. The type argument has three possible values: ‘BUSINESS’, ‘LAYER’, and
‘RASTER’. If you converted a binary column of the business table MYTABLE owned by
DAN, the stored procedure is executed as follows:

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 13

SQL> exec
sde_metadata.update_metadata(‘DAN.MYTABLE’,’BUSINESS’);

If you converted the binary column of a feature table for the feature class MYTABLE
owned by DAN, the stored procedure would be executed as follows:

SQL> exec
sde_metadata.update_metadata(‘DAN.MYTABLE’,’LAYER’);

If you converted the binary column of a raster blocks table for the raster dataset
MYTABLE owned by DAN, the stored procedure would be executed as follows:

SQL> exec
sde_metadata.update_metadata(‘DAN.MYTABLE’,’RASTER’);

Exporting to an
ArcGIS File
Geodatabase

Perhaps you are not able to allocate the additional space to the Oracle database required
to either alter the table or create a new table using the TO_LOB function. If you do have
disk space available on another system, at ArcGIS 9.2 you can export the raster dataset,
raster catalog, or feature class to a file geodatabase. The only requirement is that the
resulting file geodatabase must fit onto contiguous disk space. In other words, a file
geodatabase cannot span multiple logical disk drives. If this is not possible, you should
consider the next section, which discusses the sdeexport and sdeimport ArcSDE
command line tools. These tools allow you to break the export file into logical volumes
that can fit on multiple disk drives.

To determine how large the file geodatabase will be if you export a large raster dataset,
you can use the sderaster ArcSDE command tool with the list operation and the –storage
option. The total size displayed by this command is very close to the amount of space
required when the raster dataset is exported to the file geodatabase. Consult the ArcSDE
Administration Command Reference provided with ArcSDE for information on the
sderaster command.

Once the ArcGIS object has been exported to the file geodatabase, you can modify the
DBTUNE parameters to create a BLOB object instead of a LONG RAW, then delete the
ArcGIS object and import it from the file geodatabase. Keep in mind that users may
access the object from the file geodatabase during the import operation.

Using sdeexport and
sdeimport

If you do not have ArcGIS 9.2 installed, you will not be able to export to a file
geodatabase since the file geodatabase became available at this release. Therefore, your
next option is to use the sdeexport and sdeimport commands. ArcSDE command line
tools are not geodatabase aware and require that, upon importing the export file, you must
register the raster dataset, raster catalog, or feature class with the geodatabase.

Once the object has been exported, it can be deleted. The DBTUNE parameters will need
to be modified to create and store BLOB columns. Then the sdeimport command can be
used to move the data back into the database. The data will be unavailable until the
sdeimport command is complete.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 14

Using
estimate_blob_storage

The estimate_blob_storage package estimates the storage space that will be needed when
a LONG RAW column is converted to a BLOB column. The package was designed to
allow you to estimate the space needed for all the candidate tables within a schema for
individual tables.

To install the package, you will need to be able to create a temporary table in your default
tablespace that can store a maximum 10,000 rows of BLOB data. The estimate_space
stored procedure of this package will convert up to the first 10,000 rows of a LONG
RAW column into a temporary table with a BLOB column. Around 150 MB of storage
space is required for 10,000 rows of a raster blocks table that stores 16-bit raster data.

The following privileges must be granted to the user that will execute the stored
procedures of this package.

CREATE SESSION
CREATE TABLE
SELECT ANY TABLE
UNLIMITED TABLESPACE

If it is deemed undesirable to grant UNLIMITED TABLESPACE to the user, you must at
least grant access to the tablespaces the existing tables are stored in. The package queries
the USER_TABLESPACES view to obtain the block size of the tablespaces. This block
size is then used to determine the space required for the lob segment space for the BLOB
column should the binary data be large enough to be stored out of line.

The user which installs and owns the estimate_blob_storage package must be granted the
CREATE PROCEDURE. Typically this is the user that executes the package but it does
not need to be.

sqlplus system/<password>

GRANT CREATE SESSION TO <user>;
GRANT CREATE TABLE TO <user>;
GRANT SELECT ANY TABLE TO <user>;
GRANT UNLIMITED TABLESPACE TO <user>;
GRANT CREATE PROCEDURE TO <user>;

This package can be installed under any schema using the following syntax:

sqlplus <user>/<password>

@estimate_blob_storage.sps

@estimate_blob_storage.spb sde

Using the Oracle SQL*Plus utility, a connection is made by the owner of the schema
under which the tools are to be installed. The package specification is created by running

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 15

the estimate_blob_storage.sps script, followed by the creation of the package body by
running the estimate_blob_storage.spb script. Notice that an argument is required for the
package body script. It is the name of the geodatabase under which the tables you want to
convert are referenced. Support for multiple geodatabases has been included in the
ArcSDE 9.2 release. If you have created another geodatabase other than the sde master
geodatabase and added tables that store data in LONG RAW columns, you will need to
create the package with the name of that geodatabase argument to estimate storage for
those tables.

Perhaps in addition to the master sde geodatabase you have created a geodatabase under
the joe schema. When installing the package body, you would substitute "joe" for sde in
the above example:

@estimate_blob_storage.spb joe

The installation of the package body will use the argument to create stored procedures
that reference the correct qualified ArcSDE metadata table. For instance, if the tables to
be estimated for BLOB storage are referenced from the joe geodatabase, the
JOE.TABLE_REGISTRY must be queried rather than the SDE.TABLE_REGISTRY.

After installing the package, you must grant privileges to the user who will execute the
stored procedures. Note that this is not necessary if the user that installed the packages
will also be executing them. To grant privileges, use the following syntax:

grant execute on estimate_blob_storage to alexis;

In this case, privileges have been granted to user alexis. For this user to execute a stored
procedure of the package, the following syntax must be used:

exec gina.estimate_blob_storage.estimate();

In this case, the package was installed under the user gina schema but executed by the
user alexis. If the package was installed under the user alexis schema and executed by
alexis, a qualifying schema name would not have been necessary and could be executed
as follows:

exec estimate_blob_storage.estimate();

The stored procedures display the results of estimates with the put_line stored procedure
of the Oracle-provided DBMS_OUTPUT package. Therefore, to see the results of the
estimate_blob_storage stored procedure, you will need to enable server output with the
following syntax:

set SERVEROUTPUT on

Note: The output of the DBMS_OUTPUT package is written to a buffer that is not
displayed to the output device until execution is returned to the parent process. Therefore,
the output of the estimate_blob_storage package stored procedures will not be displayed

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 16

until they have finished execution. Therefore, be careful not to assume that the process is
hung if it is not reporting output.

The SQL*PLUS SPOOL command is also useful for capturing the output of the package
to a file for later examination. Writing the output to a file allows you to use your file
editor to search through the output.

The hierarchy of the stored procedures within the package permits you to estimate the
space for either the registered tables of an entire geodatabase or specific data objects
within a geodatabase. The stored procedure references of the package that follow are
described in descending order, where the highest in the hierarchy, estimate, is described
first. This stored procedure will fetch the list of registered ArcSDE tables from the
TABLE_REGISTRY and convert each one by passing it to the estimate_business_table.

The estimate_business_table stored procedure determines if the business table contains a
LONG RAW column and estimates the space required to convert the business table with
a call to estimate_space. It also determines if the business table has a dependent adds
table and, if it does, estimates the space required to convert it with another call to
estimate_space. The estimate_layer and estimate_raster stored procedure are called if the
business table has a feature column or a raster column.

The output of the estimate stored procedure looks like this:

SQL> set SERVEROUTPUT ON
SQL> exec estimate_blob_storage.estimate();
Processing business table RASTER.COUNTIES and its
dependents.
*
The converted feature table RASTER.F253 will need at least
1.11 MB.
The associated lob segment will need at least 0 bytes.
*
Processing business table RASTER.LAKES and its dependents.
*
The converted raster block table RASTER.SDE_BLK_237 will
need at least 692.69 KB.
The associated lob segment will need at least 255.13 MB.
*
*
The converted raster auxiliary table RASTER.SDE_AUX_237
will need at least 6.24 KB.
The associated lob segment will need at least 0 bytes.
*
*
The converted feature table RASTER.F252 will need at least
191 bytes.
The associated lob segment will need at least 0 bytes.
*

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 17

Processing business table RASTER.ROUTE_DATA and its
dependents.
*
The table RASTER.ROUTE_DATA is empty.
*
*
The table RASTER.A472 is empty.
*

PL/SQL procedure successfully completed.

SQL>

For each business table the estimate_business_table stored procedure examines, it
displays the message “Processing business table <name> and its dependents.” If neither
the business table nor any of its dependents contain a LONG RAW column, this is the
only message that you will see regarding this table. No further processing will be
performed.

However, if LONG RAW columns are found, you will see other messages. For the
RASTER.COUNTIES table the message is:

Processing business table RASTER.COUNTIES and its
dependents.
*
The converted feature table RASTER.F253 will need at least
1.11 MB.
The associated lob_segment will need at least 0 bytes.

The RASTER.COUNTIES table has a dependent feature table, RASTER.F253, that will
need at least 1.11 MB after the LONG RAW column has been converted to BLOB. The
LOB segment for the BLOB column of this feature table is estimated to store no chunks.
That is because the estimate_space stored procedure, which actually does all the work,
did not find any features that exceeded the 3,964 in-row threshold when it sampled the
first 5,000 to 10,000 rows of the feature table.

You should also consider the message for the RASTER.LAKES business table:

Processing business table RASTER.LAKES and its dependents.
*
The converted raster block table RASTER.SDE_BLK_237 will
need at least 692.69 KB.
The associated lob segment will need at least 255.13 MB.

The RASTER.LAKES table has a dependent raster blocks table,
RASTER.SDE_BLK_237, that will need at least 692.69 KB for the raster blocks table
but will require at least 255.13 MB in the LOB segment. So much space is required in the
LOB_SEGMENT table and so little is required for the raster blocks table because vast

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 18

majority, if not all, of the blocks exceed the 3,964 in-row threshold and must be stored in
the LOB segment.

Consider also the message for the RASTER.ROUTE_DATA table:
Processing business table RASTER.ROUTE_DATA and its
dependents.
*
The table RASTER.ROUTE_DATA is empty.

In this case, a LONG RAW column was found in the ROUTE_DATA table, but since the
table is empty, the estimate_space stored procedure is not able to provide an estimate.

 The estimate Stored
Procedure

The estimate stored procedure estimates the space that will be required when the LONG
RAW columns of all registered business tables are converted to BLOB.

The syntax is as follows:

PROCEDURE estimate (v_owner IN name_t DEFAULT NULL,

 verbose IN verbose_t DEFAULT FALSE);
where

 v_owner is the owner of the tables that are to be estimated. If you do not specify an

owner, the estimate stored procedure will estimate the space required to convert all
registered tables and their dependents. If you do specify an owner, only the owner’s
registered tables and their dependents are converted. The default value is NULL.

 verbose is a Boolean that, when set to TRUE, displays the elapsed time of the table

conversions or error messages. The default value is FALSE.

The estimate stored procedure calls the estimate_business_table stored procedure for
each business table referenced in the TABLE_REGISTRY that is owned by the specified
owner if one was passed in as an argument. If an owner is not specified,
estimate_business_table is called for all tables listed in the TABLE_REGISTRY.

 The
estimate_business_table

Stored Procedure

The estimate_business_table stored procedure estimates the space that will be required
when the LONG RAW column of a registered business table and any associated feature
class or raster dataset is converted to BLOB.

The syntax is as follows:

PROCEDURE estimate_business_table(
 qtabname IN name_t,

 verbose IN verbose_t DEFAULT FALSE);

where

 qtabname is the qualified name of the business table. This is a required argument.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 19

 verbose is a Boolean that, when set to TRUE, displays the elapsed time of the table
conversions or error messages. The default value is FALSE.

The qualified table name is one of <schema>.<table>. If the schema is omitted from the
qualified table name, the estimate_business_table stored procedure assumes that the
business table and all its dependents are owned by the currently connected user.

The estimate_business_table stored procedure calls the estimate_table, estimate_layer,
and estimate_raster stored procedures. The estimate_business_table stored procedure
will estimate the space required for the following:

• The table
• The BLOB’s LOB segment after the business table’s LONG RAW column is

converted to BLOB
• The LONG RAW column of any of the table's feature class, raster table, and

adds table dependents

Execute the estimate_business_table stored procedure if you want to estimate all the
tables containing LONG RAW columns associated with a given business table.

 The estimate_layer
Stored Procedure

The estimate_layer stored procedure estimates the space that will be required when the
LONG RAW column of a feature class is converted to BLOB.

The syntax is as follows:

PROCEDURE estimate_layer (qtabname IN name_t,
 verbose IN verbose_t DEFAULT FALSE);

where

 qtabname is the qualified name of the business table and the feature table associated

with it. This is a required argument.

 verbose is a Boolean that, when set to TRUE, displays elapsed time of the table

conversions or error messages. The default value is FALSE.

The qualified table name is one of <schema>.<table>. If the schema is omitted from the
qualified table name, the estimate_layer stored procedure assumes that the feature table is
owned by the currently connected user.

The estimate_layer stored procedure calls the estimate_space stored procedure with the
name of the feature table, the DBTUNE configuration keyword, and the F_STORAGE
storage parameter.

Execute the estimate_layer stored procedure if you want to estimate the space required by
a feature table and the LOB segment after converting its LONG RAW column to BLOB.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 20

 The estimate_raster
Stored Procedure

The estimate_raster stored procedure estimates the space that will be required when the
LONG RAW columns of a raster dataset is converted to BLOB.

The syntax is as follows:

PROCEDURE estimate_raster (qtabname IN name_t,
 verbose IN verbose_t DEFAULT FALSE);

where

 qtabname is the qualified name of the business table to which the raster blocks table

and raster auxiliary table belong. This is a required argument.

 verbose is a Boolean that, when set to TRUE, displays the elapsed time of the table

conversions or error messages. The default value is FALSE.

The qualified table name is one of <schema>.<table>. If the schema is omitted from the
qualified table name, the estimate_raster stored procedure assumes that the raster tables
are owned by the currently connected user.

The estimate_raster stored procedure calls the estimate_space stored procedure once with
the name of the raster blocks table and again with the name of the raster auxiliary table.

Execute the estimate_raster stored procedure if you want to estimate the storage space
required to convert the LONG RAW column of a raster block table and raster auxiliary
table to BLOB.

Using
convert_lr_to_blob

The convert_lr_to_blob package converts LONG RAW columns to BLOB columns using
the Oracle ALTER TABLE statement. The package was designed to allow you to convert
all the candidate tables within a schema or convert individual tables.

The first part of the conversion requires the installation of the sde_metadata package by
the owner of the geodatabase. This package contains the update_metadata stored
procedure. This stored procedure will update the geodatabase metadata after a column
has been converted from LONG RAW to BLOB.

The sde user is the owner of the master geodatabase and the one you are likely to be
using. However, if you are converting the columns under a geodatabase (multiple
geodatabases were introduced at 9.2) other than the sde master, you will need to install
the sde_metadata package under that user.

This is an example of installing the package under the sde user. Note that you would
connect as the sde user using SQL*Plus in this case, and run the sde_metadata.sps script
to install the package specification. When you run the sde_metadata.spb script to install
the package body, you include the sde owner name as an argument. The argument is used
to create the qualified table names of the geodatabase metadata tables that are used by
many of the stored procedures within the package.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 21

 sqlplus sde/<password>

@sde_metadata.sps

@sde_metadata.spb sde

After you install this package, you must grant execute privileges to the user who will
execute the stored procedure. In this example, user alexis will execute this stored
procedure.

grant execute on sde_metadata to alexis;

The following privileges must be granted to the user that will execute the stored
procedures of the convert_lr_to_blob package.

CREATE SESSION
ALTER ANY TABLE
ALTER ANY INDEX
SELECT ANY TABLE
UNLIMITED TABLESPACE

If it is deemed undesirable to grant UNLIMITED TABLESPACE to the user, you must at
least grant access to the tablespaces the existing tables are stored in as well as any
tablespaces that tables will be moved to or lob segments will be created in.

The user which installs and owns the convert_lr_to_blob package must be granted the
CREATE PROCEDURE. Typically this is the user that executes the package but it does
not need to be.

sqlplus system/<password>

GRANT CREATE SESSION TO <user>;
GRANT ALTER ANY TABLE TO <user>;
GRANT ALTER ANY INDEX TO <user>;
GRANT SELECT ANY TABLE TO <user>;
GRANT UNLIMITED TABLESPACE TO <user>;
GRANT CREATE PROCEDURE TO <user>;

The second part of the installation requires you to install the convert_lr_to_blob package,
which can be installed by any user. In this example, user joe is connecting using
SQL*Plus and running the convert_lr_to_blob.sps script to install the package
specification. When you run the convert_lr_to_blob.spb script to install the package
body, you include as an argument the geodatabase owner name. The argument is used to
create the qualified table names of the geodatabase metadata tables that are used by many
of the stored procedures within the package.

sqlplus joe/<password>

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 22

@convert_lr_to_blob.sps

@convert_lr_to_blob.spb sde

After you have installed the package, you must grant access to the users that are going to
execute it. In this example, the user that will execute the stored procedures is alexis, so
joe (who owns the stored procedures) would grant execute privileges to alexis. You must
connect as the joe user and grant execute privileges to alexis on the packages as follows:

sqlplus joe/<password>

grant execute on convert_lr_to_blob to alexis;

In this case, privileges have been granted to user alexis. For alexis to execute a stored
procedure of the package, the following syntax must be used:

exec joe.convert_lr_to_blob.convert();

In this case, the package was installed under the user joe schema but executed by the user
alexis. If the package was installed under the user alexis schema and executed by alexis, a
qualifying schema name would not have been necessary and could be executed as
follows:

exec convert_lr_to_blob.convert();

The stored procedures display the results of conversions with the put_line stored
procedure of the Oracle-provided DBMS_OUTPUT package. Therefore, to see the results
of the convert_lr_to_blob stored procedure, you will need to enable server output with
the following syntax:

set SERVEROUTPUT on

Note: The output of the DBMS_OUTPUT package is written to a buffer that is not
displayed to the output device until execution is returned to the parent process. Therefore,
the output of the convert_lr_to_blob package stored procedures will not be displayed
until they have finished execution. Therefore, be careful not to assume that the process is
hung if it is not reporting output.

The SQL*PLUS SPOOL command is also useful for capturing the output of the package
to a file for later examination. Writing the output to a file allows you to use your file
editor to search through the output.

The hierarchy of the stored procedures within the package permits you to convert either
the registered tables of an entire geodatabase or specific data objects within a
geodatabase. The stored procedure references of the package that follow are described in
descending order, where the highest in the hierarchy, convert, is described first. This
stored procedure will fetch the list of registered ArcSDE tables from the

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 23

TABLE_REGISTRY and convert each one by passing it to the convert_business_table
stored procedure.

The convert_business_table stored procedure determines if the business table contains a
LONG RAW column and converts it with a call to convert_table. It also determines if the
business table has a dependent adds table and, if it does, converts it with another call to
convert_table. The convert_layer and convert_raster stored procedures are called if the
business table has a feature column or a raster column.

The normal output of the convert stored procedure appears as follows:

SQL> set SERVEROUTPUT ON
SQL> SPOOL myoutput.txt
SQL> exec convert_lr_to_blob.convert();
Processing table QUAKES
Processing table WORLD

PL/SQL procedure successfully completed.

SQL>SPOOL OFF
SQL>

You must enable the SQL*Plus environment SERVEROUTPUT to display PL/SQL
output; otherwise, SQL*Plus will only report whether the PL/SQL stored procedure was
successful or not:

SQL> exec convert_lr_to_blob.convert();

PL/SQL procedure successfully completed.

SQL>

You can obtain a detailed output of the processing of any of the convert_lr_to_blob
stored procedures by setting the verbose argument to TRUE (its default value is FALSE).
The following output is an example of the convert stored procedure with the verbose
argument set to TRUE.

SQL> set SERVEROUTPUT ON
SQL> SPOOL myoutput.txt
SQL> exec convert_lr_to_blob.convert(verbose=>TRUE);
Processing table QUAKES
Converting business table RASTER.QUAKES LONG RAW column to
BLOB.
start time: 2007-03-07 02:03:40
Converting table RASTER.QUAKES
FYI: QUAKES does not contain a LONG RAW column.
finish time: 2007-03-07 02:03:40
Elapsed time: 0 seconds.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 24

Converting feature table RASTER.F312 points column to BLOB.
start time: 2007-03-07 02:03:40
Converting table RASTER.F312
finish time: 2007-03-07 02:03:40
Elapsed time: 0 seconds.
Processing table WORLD
Converting business table RASTER.WORLD LONG RAW column to
BLOB.
start time: 2007-03-07 02:03:40
Converting table RASTER.WORLD
FYI: WORLD does not contain a LONG RAW column.
finish time: 2007-03-07 02:03:40
Elapsed time: 0 seconds.
Converting raster block table RASTER.SDE_BLK_290 block_data
column to BLOB.
start time: 2007-03-07 02:03:40
Converting table RASTER.SDE_BLK_290
finish time: 2007-03-07 02:03:03
Elapsed time: 23 seconds.
Converting raster auxillary table RASTER.SDE_AUX_290 object
column to BLOB
start time: 2007-03-07 02:03:03
Converting table RASTER.SDE_AUX_290
finish time: 2007-03-07 02:03:03
Elapsed time: 0 seconds.
Converting feature table RASTER.F311 points column to BLOB.
start time: 2007-03-07 02:03:03
Converting table RASTER.F311
finish time: 2007-03-07 02:03:03
Elapsed time: 0 seconds.

PL/SQL procedure successfully completed.

SQL> SPOOL OFF
SQL>

Within this output, there are a number of points of interest such as the FYI statements.
These are information messages telling you that the procedure attempted to do something
but was unable to. For instance, the above output contains the following statement:

FYI: QUAKES does not contain a LONG RAW column.

In this case, the procedure did not find a LONG RAW column on the
RASTER.QUAKES table. However, when the RASTER.F312 is converted, the FYI
message does not appear. This indicates that a LONG RAW column was found and
converted.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 25

Notice also that the elapsed time to convert the feature table, RASTER.F312, was 0. The
small size of the F312 table accounts for why it was converted at subsecond speed.
Not until the convert stored procedure encounters the much larger raster blocks table,
RASTER.SDE_BLK_290, does the convert stored procedure register an elapsed time of
23 seconds.

 The convert Stored

Procedure
The convert stored procedure converts the LONG RAW column of all registered business
tables and any dependent adds tables, feature tables, raster blocks tables, and raster
auxiliary tables. A business table is registered if it is referenced in the
TABLE_REGISTRY of the geodatabase.

The syntax is as follows:

PROCEDURE convert (v_owner IN name_t DEFAULT NULL,

 kword IN name_t DEFAULT 'DEFAULTS',
 verbose IN verbose_t DEFAULT FALSE);

where

 v_owner is the owner of the tables that are to be converted. If you do not specify an

owner, the convert stored procedure will convert all registered tables and their
dependents. If you do specify an owner, only the owner’s registered tables and their
dependents are converted. The default value is NULL.

 kword is the configuration keyword. The default value is DEFAULTS.

 verbose is a Boolean that, when set to TRUE, displays the elapsed time of the table

conversions or error messages. The default value is FALSE.

The convert stored procedure calls the convert_business_table stored procedure for each
business table referenced in the TABLE_REGISTRY.

Execute the convert stored procedure if you want to convert all the tables containing
LONG RAW columns in your ArcSDE geodatabase. Before you call this stored
procedure, verify that your tablespaces contain enough space.

 The
convert_business_table

Stored Procedure

The convert_business_table stored procedure converts the LONG RAW columns of the
business table, adds table, feature table, raster blocks table, and raster auxiliary table. The
syntax is as follows:

PROCEDURE convert_business_table(
 qtabname IN name_t,

 kword IN name_t DEFAULT 'DEFAULTS',
 verbose IN verbose_t DEFAULT FALSE);

where

 qtabname is the qualified name of the business table. This is a required argument.

 kword is the configuration keyword. The default is DEFAULTS.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 26

 verbose is a Boolean that, when set to TRUE, displays the elapsed time of the table

conversions or error messages. The default value is FALSE.

The qualified table name is one of <schema>.<table>. If the schema is omitted from the
qualified table name, the convert_business_table stored procedure assumes that the
business table and all its dependents are owned by the currently connected user.

The convert_business_table stored procedure calls the convert_table, convert_layer, and
convert_raster stored procedures. The convert_business_table stored procedure will
convert the LONG RAW column of the business table to BLOB as well as the LONG
RAW column of any of its feature class, raster table, and adds table dependents.

The B_STORAGE parameter is passed to the convert_table stored procedure if the
business table contains a LONG RAW column. The A_STORAGE parameter is passed to
the convert_table stored procedure if the business table’s adds table contains a LONG
RAW column.

Execute the convert_business_table stored procedure if you want to convert all the tables
containing LONG RAW columns associated with a given business table. Before you call
this stored procedure, verify that your tablespaces contain enough space.

 The convert_layer
Stored Procedure

The convert_layer stored procedure will convert a feature table’s POINTS column from
LONG RAW to BLOB. The syntax is as follows:

PROCEDURE convert_layer (qtabname IN name_t,
 kword IN name_t DEFAULT 'DEFAULTS',
 verbose IN verbose_t DEFAULT FALSE);

where

 qtabname is the qualified name of the business table with which the feature table is

associated. This is a required argument.

 kword is the DBTUNE configuration keyword from which the F_STORAGE

parameter will be read. The default value is DEFAULTS.

 verbose is a Boolean that, when set to TRUE, displays elapsed time of the table

conversion or error messages. The default value is FALSE.

The qualified table name is one of <schema>.<table>. If the schema is omitted from the
qualified table name, the convert_layer stored procedure assumes that the feature table is
owned by the currently connected user.

The convert_layer stored procedure calls the convert_table stored procedure with the
name of the feature table, the DBTUNE configuration keyword, and the F_STORAGE
parameter.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 27

Execute the convert_layer stored procedure if you want to convert the feature tables
containing LONG RAW columns in your ArcSDE geodatabase. Before you call this
stored procedure, verify that the LOB segment and table segment tablespaces contain
enough space.

 The convert_raster
Stored Procedure

The convert_raster stored procedure converts a raster blocks table’s BLOCK_DATA
column and the raster auxiliary table’s OBJECT column from LONG RAW to BLOB.
The syntax is as follows:

PROCEDURE convert_raster (qtabname IN name_t,
 kword IN name_t DEFAULT 'DEFAULTS',
 verbose IN verbose_t DEFAULT FALSE);

where

 qtabname is the qualified name of the business table to which the raster blocks table

and raster auxiliary table belong. This is a required argument.

 kword is the configuration keyword. The default value is DEFAULTS.

 verbose is a Boolean that, when set to TRUE, displays the elapsed time of the table

conversions or error messages. The default value is FALSE.

The qualified table name is one of <schema>.<table>. If the schema is omitted from the
qualified table name, the convert_raster stored procedure assumes that the raster tables
are owned by the currently connected user.

The convert_raster stored procedure calls the convert_table stored procedure once with
the name of the raster blocks table and again with the name of the raster auxiliary table.
The configuration keyword and the BLK_STORAGE parameter are passed with the
raster block table name. The configuration keyword and the AUX_STORAGE parameter
are passed with the raster auxiliary table name.

Execute the convert_raster stored procedure if you want to convert the raster block table
and raster auxiliary table containing LONG RAW columns in your ArcSDE geodatabase.
Before you call this stored procedure, verify that your LOB segment and table segment
tablespaces contain enough space.

Conversion
Scenarios

The following provides a number of possible ways to convert the binary columns of a
geodatabase from LONG RAW to BLOB. You should select the one that best fits your
situation or modify one to meet your needs.

Scenario 1—Convert the entire geodatabase at one time.

This scenario will work if the geodatabase has the following properties:

 Adequate space exists to complete the conversion.
 The geodatabase does not contain any massive raster datasets or raster catalogs that

might require special handling.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 28

 The conversion can be completed during off hours.

For this scenario, the procedure is straightforward.

1. Perform a full DBMS backup of the geodatabase to ensure that it can be
recovered in the event of a catastrophic failure during the conversion
process.

2. Install the estimate_blob_storage package and run the estimate stored
procedure to obtain the converted table and LOB segment sizes.

3. Create new tablespaces or extend your existing tablespaces to hold the
converted tables and LOB segments.

4. Modify your DBTUNE table. Add a new keyword with the appropriate
LOB storage parameters assigned to the correct tablespaces.

5. Install and run the convert_lr_to_blob and sde_metadata packages. Run the
convert stored procedure to convert. This stored procedure will cycle
through all tables registered to the geodatabase, converting their LONG
RAW columns to BLOB.

6. Follow up by checking for any tables that may not have been converted.
Possible reasons for this include tables were not registered to the
geodatabase or the convert stored procedure encountered a problem during
the conversion such as a lack of storage space.

Scenario 2—Some tables are very large and will need to be handled separately.

This scenario works best for geodatabases that have a few very large tables that need to
be converted before the remainder of the geodatabase is converted. In this case, the
geodatabase will have the following properties:

 Space is at a premium and must be recovered following the conversion of the large

tables.
 The geodatabase contains a few large tables that require special handling.
 The conversion of each large table can be completed during off hours. However, the

conversion may need to be completed over the course of several days.

For this scenario, the procedure requires special handling of a number of large tables
before the rest of the tables in the geodatabase can be converted.

1. Perform a full DBMS backup of the geodatabase to ensure that it can be
recovered in the event of a catastrophic failure during the conversion
process.

2. Install the estimate_blob_storage package and run the
estimate_business_table stored procedure to obtain the converted table and
LOB segment sizes for the large tables. This stored procedure will estimate
the space required for the business table and any associated adds, feature,
and raster blocks tables.

3. Create new tablespaces or extend your existing tablespaces to hold the
converted tables and LOB segments of the large tables. It is possible that
you will not be able to acquire enough space for all the large tables. If this is

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 29

the case, you may need to convert the tables one at a time, recovering the
space after the old table is dropped and using that space for conversion of
the next table.

4. Modify your DBTUNE table. Add a new keyword with the appropriate
LOB storage parameters assigned to the correct tablespaces in which the
large tables will be stored.

5. Install and run the convert_lr_to_blob and sde_metadata packages. Run the
convert_layer stored procedure if you are converting a feature table. Run
the convert_raster stored procedure if you are converting a raster blocks
table. Run the convert_business table to convert a business table and any
associated adds, feature, or raster blocks tables.

6. Once the large tables have been converted, use the estimate stored
procedure of the estimate_blob_storage package to obtain an estimate for
the remainder of the registered tables that contain LONG RAW columns.

7. If necessary, create new tablespaces or extend existing ones to hold the
converted tables and LOB segments of the remaining tables.

8. Use the convert stored procedure of the convert_lr_to_blob package to
convert the LONG RAW columns of the remaining tables to BLOB.

9. Follow up by checking for any tables that may not have been converted.
The possible reasons for this include tables were not registered to the
geodatabase or the convert stored procedure encountered a problem during
the conversion such as a lack of storage space.

Scenario 3—The geodatabase is massive. It either contains several large raster
datasets or hundreds to thousands of vector layers, some of which may be of
significant size.

This scenario will require special handling of all data, as it will require a significant
amount of time to convert the data. In some cases, the conversion of individual tables
might exceed the amount of time available during off hours. Geodatabases that fall into
this scenario have the following properties:

 Space may be at a premium, requiring the database administrator (DBA) to develop a

strategy to recover space as the conversion process proceeds.
 The geodatabase contains massive raster datasets or a very large number of vector

layers of significant size.
 The conversion of some tables may require more time than the off-hour limit

permits.

Tables that are too large to be converted within the off-hour time limit can be converted
during the day.

The rows of these tables should not be edited while they are being converted. However,
queries to the table will continue normally right up to the point that the ALTER TABLE
statement substitutes the new segment containing the BLOB column and drops the old
segment containing the LONG RAW column. At this point, the indexes become
invalidated. While the convert_table stored procedure rebuilds the indexes, applications

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

May 2007 30

accessing these tables appear to halt. Therefore, warn application users to expect
interruptions to their workflow during the reconstruction of the indexes.

The procedure is the same as scenario 2 with the exception that the large tables will have
to be converted during normal daytime activities.

An alternate procedure is to follow the procedure laid out in scenario 4, which is to copy
the geodatabase and perform the conversion on the copy.

Scenario 4—The geodatabase is a data source for a Web service that must remain
up all the time.

In this scenario, it will be challenging to convert the tables without interrupting the
requests to the server portal unless the tables can be duplicated in another geodatabase.
Therefore, you will need to back up the geodatabase, recover it to a new location, and
convert the copy of the geodatabase. Following the conversion, a substitution occurs,
replacing the converted geodatabase with the original unconverted one. Changes made to
the original geodatabase during the conversion process will be lost unless they are
transferred to the copy.

Under this scenario, the geodatabase has the following properties:

 Resources must be available to duplicate the geodatabase.
 The geodatabase can contain larger raster datasets or many vector layers of

significant size.
 Service to the geodatabase cannot be interrupted.

1. Perform a full DBMS backup of the geodatabase to recover it to a new

location.
2. Recover the geodatabase to a separate Oracle instance. From this point on,

all work is performed on the recovered copy of the geodatabase. Edits to
tables in the original geodatabase should be minimized because these
changes will need to be duplicated on the copy. Otherwise, the changes will
be lost when the copy of the geodatabase is substituted for the original.

3. Install the estimate_blob_storage package and run the
estimate_business_table stored procedure to obtain the converted table and
LOB segment sizes for the large tables. This stored procedure will estimate
the space required for the business table and any associated adds, feature,
and raster blocks tables.

4. Create new tablespaces or extend your existing tablespaces to hold the
converted tables and LOB segments of the large tables. It is possible that
you will not be able to acquire enough space for all the large tables. If this is
the case, you may need to convert the tables one at a time, recovering the
space after the old table is dropped and using that space for conversion of
the next table.

5. Modify your DBTUNE table. Add a new keyword with the appropriate
LOB storage parameters assigned to the correct tablespaces in which the
large tables will be stored.

Converting from LONG RAW to BLOB in an ArcSDE for Oracle geodatabase

ESRI Technical Paper 31

6. Install and run the convert_lr_to_blob and sde_metadata packages. Run the
convert_layer stored procedure if you are converting a feature table. Run
the convert_raster stored procedure if you are converting a raster blocks
table. Run convert_business_table to convert a business table and any
associated adds, feature, or raster blocks tables.

7. Once the large tables have been converted, use the estimate stored
procedure of the estimate_blob_storage package to obtain an estimate for
the remainder of the registered tables that contain LONG RAW columns.

8. If necessary, create new tablespaces or extend existing ones to hold the
converted tables and LOB segments of the remaining tables.

9. Use the convert stored procedure of the convert_lr_to_blob package to
convert the LONG RAW columns of the remaining tables to BLOB.

10. Follow up by checking for any tables that may not have been converted.
The possible reasons for this include tables were not registered to the
geodatabase or the convert stored procedure encountered a problem during
the conversion such as a lack of storage space.

11. Substitute the converted copy of the geodatabase for the original one.
i. Perform a full backup on the converted geodatabase.

ii. Point the Web service to the converted geodatabase.
iii. If the original Oracle instance must be used, recover the converted

geodatabase to the original Oracle instance.
iv. Point the Web service to the original Oracle instance that now has

a converted geodatabase.

