

ArcGIS Metadata Toolkit 10.5.x—May 2017 1

ArcGIS 10.5.x Metadata Toolkit

The ArcGIS Metadata Toolkit provides information and supports the following activities relating to the creation

and management of metadata in the ArcMap, ArcCatalog, and ArcGlobe ArcGIS for Desktop applications.

Customization of the metadata experience in ArcGIS Pro is not supported by this toolkit.

 Document the XML format in which an item’s metadata is made available to the metadata editor.

 Change the manner in which metadata is displayed.

 Change the settings used to populate the metadata geoprocessing tools when buttons are clicked in the

Description tab.

o Specify the Translator used to export metadata to a standard XML format.

o Specify if and how the metadata may be validated using an XML Schema or XML DTD.

 Change the pages included in the metadata editor, except for the Item Description page, which must be

included.

 Change the values provided in drop-down lists in the metadata editor.

 Change the validation rules associated with the content that can be provided in the metadata editor.

 Change the elements included in an existing metadata page, except for metadata elements that are

required by ArcGIS software.

 Add a custom metadata element to a page and to the ArcGIS metadata format.

 Add a custom page to the metadata editor.

The ArcGIS Metadata Toolkit is not intended to be used for the following purposes.

 Change the manner in which ArcGIS software communicates with the metadata editor or an item’s

metadata.

 Change the buttons that appear in the Description tab.

 Change the entire metadata editor to store content in a different XML format instead of storing content

in the ArcGIS metadata format.

Requirements
 ArcGIS 10.5.x for Desktop – ArcMap

o System requirements: http://desktop.arcgis.com/en/system-requirements/latest/arcgis-

desktop-system-requirements.htm.

o ArcGIS for Desktop metadata capabilities require Internet Explorer.

o .NET Framework 4.5 is the minimum required by ArcGIS for Desktop.

 An edition of Microsoft Visual Studio that supports C# to build ArcGIS metadata editor pages

o The editions of Visual Studio that are supported for customizing ArcGIS for Desktop are

discussed in the system requirements for ArcObjects SDK for Microsoft .NET Framework:

http://desktop.arcgis.com/en/system-requirements/latest/arcobjects-sdk-system-

requirements.htm.

http://desktop.arcgis.com/en/system-requirements/latest/arcgis-desktop-system-requirements.htm
http://desktop.arcgis.com/en/system-requirements/latest/arcgis-desktop-system-requirements.htm
http://desktop.arcgis.com/en/system-requirements/latest/arcobjects-sdk-system-requirements.htm
http://desktop.arcgis.com/en/system-requirements/latest/arcobjects-sdk-system-requirements.htm

ArcGIS Metadata Toolkit 10.5.x—May 2017 2

Toolkit contents
The following resources are provided with the ArcGIS 10.5.x for Desktop version of the ArcGIS Metadata Toolkit:

Resource Explanation

This document (ArcGIS Metadata
Toolkit.pdf)

Provides an overview of the different aspects involved in creating a custom
metadata experience in ArcGIS 10.5.x for Desktop.

ArcGIS metadata v1.dtd The most current version of the ArcGIS metadata format version 1.0 XML
Document Type Definition (DTD). This DTD defines the ArcGIS metadata
format. This information is discussed in Understanding the ArcGIS
metadata format.

ArcGIS Metadata Details.xls An Excel workbook documenting the ArcGIS metadata format. This
workbook provides the following information:

 ArcGIS metadata elements identified by name and XPath

 Indicates which elements are automatically updated by ArcGIS
software

 Indicates which elements can be edited in the ArcGIS metadata editor
with different metadata styles and where they can be found in the
editor

 Indicates which elements are indexed and used by ArcGIS for Desktop
Search

Understanding the ArcGIS metadata format discusses how to use this
workbook.

Examples/Custom display folder Sample custom XSLT 1.0 stylesheets that can be used to display ArcGIS
metadata content in ArcGIS for Desktop. The stylesheets extract ArcGIS
metadata content from the XML format in which it is made available to the
ArcGIS metadata editor and transform it to an HTML page displayed in the
Description tab in ArcCatalog and the Item Description window.

 codelist_customCoverageContentTypeCode.xml—A customized
version of the codelists.xslt file provided with ArcGIS for Desktop. It
supports displaying an appropriate phrase in the metadata display that
corresponds to the custom code added to the Coverage Content Type
Code drop-down list by the example customizations described in
Customizing the contents of a drop-down list.

 XML.xsl—A custom stylesheet that creates an interactive HTML page
that allows you to explore the structure of an ArcGIS metadata XML
document.

Customizing the metadata display is discussed in Creating a custom
metadata XSLT stylesheet for display.

Examples/Custom metadata
editor codelists folder

Sample custom codelist definition files that can be used to define the
values that appear in drop-down lists in the ArcGIS metadata editor.

 Codelists_ANZLICsearchThemes.xml—An example XML file that could
be used to define the values for a custom drop-down list in the ArcGIS
metadata editor. It uses the same XML format as other codelists
provided with the ArcGIS metadata editor and includes the value
Empty. This information was derived from the ISO 19139-compliant

ArcGIS Metadata Toolkit 10.5.x—May 2017 3

XML document that defines this custom codelist:
http://asdd.ga.gov.au/asdd/work/ISOmetadata/anzlic-theme.xml.

 Codelists_ArcGIS.xml—An English-only version of the drop-down list
definitions used by the pages provided with ArcGIS. The file is
annotated with comments and attributes that indicate the origin of
the list values, and which values are available in different metadata
styles.

 GAScopeCodeList.xml—A copy of the online version of the same file,
with the XML Schema locations removed from the file. This file can be
used to populate drop-down list values, if the XML namespaces are
mapped correctly, though an Empty value will not be available.

The importance of the Empty value and how to use these files are
discussed in Customizing the contents of a drop-down list.

Examples/Custom metadata
styles folder

Sample custom metadata style configuration files that can be used to
access the custom pages described by and provided with this toolkit.

 Custom Metadata Editor All Pages.cfg—All pages that appear in the
metadata editor are derived from the Custom Metadata Editor DLL
created in Modifying the pages provided with the ArcGIS metadata
editor. Pages provided with ArcGIS are not included in the metadata
editor.

 ISO 19139 Metadata With Custom Page.cfg—Based on the ISO 19139
metadata style, adds to the editor the custom page created in Creating
a custom metadata page. All other pages are provided with ArcGIS.

 ISO 19139 Metadata With Custom Raster Content Type Codelist.cfg—
Based on the ISO 19139 metadata style, replaces one of the pages
provided with ArcGIS with the custom page created in Customizing the
contents of a drop-down list. All other pages are provided with ArcGIS.

Configuring a metadata style discusses how to create and use a custom
metadata style.

Examples/Custom translator
folder

A sample custom translator for exporting an item’s ArcGIS metadata
content to another XML format; this example produces FGDC CSDGM
format XML files with a custom metadata standard name and version, and
a reference to a metadata profile document.

 ArcGIS2FGDCcustom.xml—The translator configuration file that
identifies which XSLT transformation will perform the export operation

 ArcGIS2FGDCcustom.xsl—The XSLT stylesheet that extracts the
appropriate ArcGIS metadata content and formats it correctly for a
specific metadata standard or profile

Creating and using custom translator files are discussed in Creating a
custom metadata translator.

Sample metadata folder A folder of sample metadata. The provided documents illustrate where to
find a metadata element in the ArcGIS metadata editor, and illustrate the
association between those elements and the metadata standards
supported by ArcGIS 10.5.x for Desktop.

http://asdd.ga.gov.au/asdd/work/ISOmetadata/anzlic-theme.xml
http://asdd.ga.gov.au/asdd/work/ISOmetadata/GAScopeCodeList.xml

ArcGIS Metadata Toolkit 10.5.x—May 2017 4

 ArcGIS accessed metadata—Illustrates which metadata elements
ArcGIS software reads and writes by different processes

 ArcGIS metadata editor only—Illustrates the association between the
ArcGIS metadata editor and the ArcGIS metadata format, and
demonstrates how content is exported to the supported metadata
standard XML formats

 FGDC metadata content—Illustrates the association between the
ArcGIS metadata editor and the CSDGM XML format, and also how
CSDGM XML files are upgraded to the ArcGIS metadata format

 INSPIRE metadata content—Illustrates the association between the
ArcGIS metadata editor, the INSPIRE Metadata Directive, and the ISO
19139 XML format

 ISO metadata content—Illustrates the association between the ArcGIS
metadata editor, the ISO 19115 metadata content standard, and the
ISO 19139 XML format; also, how ISO 19139-formatted XML files are
imported to the ArcGIS metadata format

 NAP metadata content—Illustrates the association between the
ArcGIS metadata editor, the North American Profile of ISO 19115, and
the ISO 19139 XML format

These folders and their contents are described in greater detail in
Understanding the ArcGIS metadata format.

ESRIISO to ArcGIS.pdf The ArcGIS metadata format can be thought of as version 2 of the ESRI-ISO
metadata format. This document describes the differences between these
two formats.

A new name is used to make it clear that this is an internal storage format
used by ArcGIS software; it includes information used internally by ArcGIS
software that is not formally bound to or restricted by metadata standards.
XML formats defined by metadata standards cannot be used internally by
ArcGIS software. This information is discussed further in Understanding the
ArcGIS metadata format.

Visual Studio 20XX
solutions/CustomPages Sample

A sample solution, CustomPages.sln, which defines a basic custom
metadata page. It produces the file CustomPages.dll. Creating a custom
metadata page walks you through the process of creating the page
provided by this solution. Solutions are provided for Visual Studio 2013 and
2015.

Visual Studio 20XX
solutions/CustomMetadataEditor
Source

A solution, CustomMetadataEditor.sln, containing source code for all pages
in the ArcGIS metadata editor that are provided with ArcGIS 10.5.x for
Desktop. This project uses a different namespace and library than the
installed version of the ArcGIS metadata editor to avoid conflicts. Solutions
are provided for Visual Studio 2013 and 2015.

The following links provide important information about compiling this
solution, modifying the code it provides, and distributing the results:
Overview of the ArcGIS metadata editor application
Modifying the pages provided with the ArcGIS metadata editor

ArcGIS Metadata Toolkit 10.5.x—May 2017 5

Distributing ArcGIS metadata customizations
Customizing the contents of a drop-down list
Customizing the validation rules for a page

Understanding the ArcGIS Metadata format
The ArcGIS Metadata Details Excel workbook and the sample metadata documents together document the

ArcGIS metadata format and how it relates to various metadata standards and profiles.

The ArcGIS Metadata Details Excel workbook
The ArcGIS Metadata Details workbook includes the following worksheets.

Worksheet Explanation

All Elements Lists all ArcGIS metadata elements in version 1.0 of the ArcGIS metadata format
and provides their XPaths.

ArcGIS Accessed
Elements

For all ArcGIS metadata elements, identifies which are updated automatically
by metadata synchronization and other ArcGIS processes. Also indicates which
elements will be indexed to support ArcGIS for Desktop local search. Elements
are listed in the same order as on the All Elements worksheet.

Notes provide additional information, if appropriate.

Editable Elements For all ArcGIS metadata elements, indicates which elements are editable in each
metadata style provided with ArcGIS for Desktop and indicates where the
element can be found in the ArcGIS metadata editor—on which page and under
which headings. Elements are listed in the same order as on the All Elements
worksheet.

The presence of an asterisk in a column indicates there are notes providing
additional information about editing the content for that metadata style.

Information about a specific ArcGIS metadata element can be found in the same row number on each

worksheet. The ArcGIS metadata element XPaths serve as the primary key on each worksheet.

For example, to learn about the metadata abstract, search for “abstract” on the All Elements worksheet. This

identifies two entries: the main resource abstract, also known as the description or tool summary, in row 29,

which is stored in the XPath /metadata/dataIdInfo/idAbs. An additional abstract can be provided in another

language using a different metadata element as indicated in row 24, which is stored in the XPath

/metadata/Esri/locales/locale/idAbs.

To learn more about the main abstract element, examine row 29 in the other worksheets to find the following

information:

 In the ArcGIS Accessed Elements worksheet, neither the “Added or Updated by Synchronization” nor

the “Added or Updated by Other Process” columns are shaded; this tells you no information is added

automatically to this metadata element by ArcGIS software. In ArcGIS Desktop 9.3.1, some default text

ArcGIS Metadata Toolkit 10.5.x—May 2017 6

was added to the FGDC CSDGM XML format’s abstract metadata element, but this does not occur with

ArcGIS 10.x. The “Indexed for Desktop Search” column is shaded; this tells you ArcGIS for Desktop

accesses this metadata element to include its content when it builds a local search index.

 In the Editable Elements worksheet, row 29 tells you the ArcGIS metadata abstract element is available

for editing in all metadata styles on the Item Description page. On that page it is known as the

Description for all item types except geoprocessing tools. For geoprocessing tools, this same

information is referred to as the tool summary to coordinate with the style of help used to document

geoprocessing tools.

Similarly, starting from a page in the ArcGIS metadata editor, you can look up the page’s name on the Editable

Elements worksheet and find the name of the metadata element for which you want more information. When

you find it you can determine its XPath.

The sample metadata documents
The ArcGIS Metadata Toolkit also includes the following folders of sample metadata documents. They illustrate

how the ArcGIS metadata format relates to the controls that are available in the ArcGIS metadata editor. They

also illustrate how ArcGIS metadata relates to the different metadata standards and profiles supported by

ArcGIS for Desktop.

If you look at these sample metadata documents in ArcGIS for Desktop, you can click in the metadata display

inside the Description tab and press Ctrl+F to open the browser control’s Find dialog box. In this way you can

find a specific metadata element by name.

ArcGIS accessed metadata folder

A vector dataset and a raster dataset are provided in this folder. These datasets originally had no metadata.

Their metadata was created by ArcGIS software, and its content was added by metadata synchronization and

other ArcGIS for Desktop software processes.

The metadata synchronization process records some ArcGIS internal properties of the item as well as some

content defined by metadata standards. All synchronized content is identified by a green asterisk (*) when you

look at the item’s metadata in the Description tab.

Start editing the metadata for these datasets to see what synchronized content can be edited manually. Some

information can only be added to an item’s metadata by the synchronization process, such as the item’s spatial

reference details. To include this information in standard-compliant metadata describing the item, its metadata

must be synchronized.

Additionally, the vector dataset was created by a geoprocessing operation; this information is recorded in its

geoprocessing history, which can optionally be included in the lineage when metadata is exported to a standard

format. Also, the raster dataset was copied and pasted from one folder to another using ArcGIS for Desktop; this

operation is recorded in its location history, which can be viewed under the Metadata Details heading.

Custom geoprocessing tools are also provided in this folder, and some information about these tools has been

provided manually. Metadata for one tool has been saved as an XML file to illustrate its format. When a tool’s

ArcGIS Metadata Toolkit 10.5.x—May 2017 7

name or parameters change, this information is immediately updated in the tool’s XML definition. Metadata

describing a custom tool is integrated into the tool’s XML definition.

The custom geoprocessing tool Remove local storage information has been run on the synchronized vector and

raster datasets to illustrate how machine names added by synchronization or other ArcGIS processes can be

removed from an item’s metadata before the data is shared outside of an organization.

Note: With previous versions of the toolkit, similar information was provided in the Editor and Synchronization

folders, which have been renamed.

ArcGIS metadata editor only folder

Two stand-alone metadata XML files are provided: ArcGISmetadataEditor.xml and

ArcGISmetadataEditor_service.xml. These documents identify all the metadata content that can be provided

using the ArcGIS metadata editor.

The value in each element indicates where it can be found in the ArcGIS metadata editor—on which page and

under which headings. These values can be read when you view the XML file’s contents in ArcGIS or in a

browser. This information corresponds to the information provided on the Editable Elements worksheet in the

ArcGIS Metadata Details workbook. You can search for a metadata element using the name that appears in the

ArcGIS metadata editor and see how the content is stored in the ArcGIS metadata format.

The ArcGISmetadataEditor.xml document describes data. It includes information describing both raster and

vector data. While this information isn’t typically combined into one document, it does achieve the goal of

illustrating all the information that can be provided manually to describe data. All metadata styles were used to

create the content in this file. It was exported to all the standard metadata XML formats associated with the

metadata styles provided with ArcGIS.

The ArcGISmetadataEditor_service.xml document is essentially the same as the ArcGISmetadataEditor.xml

document except that it also includes the service-specific metadata elements available in the editor with the

INSPIRE and North American Profile metadata styles. This document was exported to the INSPIRE and NAP XML

formats.

Each time the metadata is edited with a different metadata style, the style that was used is recorded in the

ArcGIS Profile element: /metadata/Esri/ArcGISProfile. Different versions of the ISO 19139 XML formats are

created when metadata is exported using the ArcGIS to ISO 19139 translator, depending on the value in this

element. If you change ArcGIS for Desktop from one ISO-based metadata style to another for the sole purpose

of exporting an ISO 19139 XML document that meets the requirements of another standard or profile, you must

first save a change to the metadata content using the new style. After making a change, the exported ISO 19139

XML document will include the name of the current metadata style’s standard or profile document in the

Metadata Standard element.

FGDC metadata content folder

ArcGIS Metadata Toolkit 10.5.x—May 2017 8

This folder contains two stand-alone metadata XML files that store information in the FGDC CSDGM XML format:

FGDCformat_fullVector.xml and FGDCformat_minRaster.xml.

When you look at these metadata documents in ArcGIS you’ll be prompted to upgrade them; since they are not

writable, click No. You’ll see all their content under the FGDC Metadata (read-only) heading. Only the content in

these files associated with the brief Item Description is available by default in the summary at the top of the

page and under the ArcGIS Metadata heading.

As you might expect, the FGDCformat_fullVector.xml file contains complete FGDC CSDGM metadata describing a

vector dataset, while the FGDCformat_minRaster.xml file contains minimal content describing a raster dataset.

The value of each element is the FGDC CSDGM element’s name, except in the case where text is not permitted

in the element. If an integer is required, the element will contain an integer.

Copies were made of these two files, which were then upgraded to the ArcGIS metadata format:

FGDCformat_fullVector_upgraded.xml and FGDCformat_minRaster_upgraded.xml. With these files, all of the

original FGDC metadata content that has been upgraded to the ArcGIS metadata format is visible under the

ArcGIS Metadata heading. The original FGDC CSDGM metadata content remains in the document after the

upgrade is complete; it is visible under the FGDC Metadata (read-only) heading.

This folder also contains a vector dataset and a raster dataset. Their metadata only has content stored in the

ArcGIS metadata format. This information was created in ArcGIS using the metadata editor in the Description

tab. The value of each ArcGIS metadata element identifies the FGDC CSDGM metadata element with which it is

associated. Properties in the metadata have also been synchronized with the dataset’s actual properties. To

understand how FGDC-formatted metadata is transferred to the ArcGIS metadata format, or to understand

where to put metadata content into the ArcGIS metadata editor, search for the name of the FGDC CSDGM

metadata element in the Description tab and see where it is located.

The vector and raster dataset metadata were exported to the FGDC CSDGM XML format using the ArcGIS to

FGDC translator. The exported files are fullFGDCvector_editInArcGIS_exportFGDC.xml and

minFGDCraster_editInArcGIS_exportFGDC.xml.

INSPIRE metadata content folder

This folder contains a vector dataset and a stand-alone metadata XML file that illustrate how ArcGIS metadata

relates to the INSPIRE Metadata Implementing Rules, as described in version 1.2 of that document.

The vector dataset illustrates where in the item’s ArcGIS metadata to record the appropriate INSPIRE metadata

content, or in which element that content has been synchronized for the vector dataset. The vector dataset’s

metadata also satisfies the minimum ISO 19115 requirements for datasets. The file INSPIREserviceContent.xml

describes a service.

Content in the metadata documents identifies the appropriate INSPIRE metadata rule by name and number. If

text is not permitted in an element, for example, because a date is required, the element will contain the

required value. Another metadata element on the same page in the metadata editor will indicate which ArcGIS

ArcGIS Metadata Toolkit 10.5.x—May 2017 9

metadata element is associated with the INSPIRE metadata rule. To better understand this relationship, search

for the name or number of the INSPIRE metadata rule in the Description tab.

Both metadata documents were exported to ISO 19139 format using the ArcGIS to ISO 19139 translator. The

exported files are INSPIREcontent_export19139INSPIRE.xml and

INSPIREserviceContent_export19139INSPIRE.xml.

ISO metadata content folder

This folder contains two files that illustrate how ISO 19115 and ISO 19119 metadata content can be provided

using the ArcGIS metadata editor. The file fullISOdata_inArcGISeditor.xml describes data, and the file

fullISOservice_inArcGISeditor.xml describes a service.

Each metadata element’s value identifies the name of the ISO metadata element, and its parent elements.

Elements that can’t contain text will contain the appropriate data instead, such as a codelist value. To

understand where to put ISO metadata content into the ArcGIS metadata editor, search for the name of the ISO

metadata element in the Description tab and see where that information is located.

These ArcGIS metadata files were exported to the ISO 19139 format using the ArcGIS to ISO 19139 translator:

ARCGIS2ISO19139.xml. The exported files are fullISOdata_inArcGISeditor_export19139.xml and

fullISOservice_inArcGISeditor_export19139.xml.

This folder also contains two files that store complete information in the ISO 19139 XML format.

ISO19139format_fullData.xml provides complete ISO 19115 content describing data, and

ISO19139format_fullService.xml provides complete ISO 19119 content describing a service. Each metadata

element’s value identifies the ISO 19139 metadata element by name.

These files were imported to ArcGIS items using the Import Metadata tool with the FROM_ISO19139 import

type. The ISO 19139-formatted dataset metadata was imported to a text file that contains point data:

xyPoints_fullISOdataImported.txt. The ISO 19139-formatted service metadata was imported to a layer file:

layer_fullISOserviceImported.lyr.

NAP metadata content folder

This folder contains a file, NAPcontent_inArcGISeditor.xml, that illustrates how metadata content specific to the

North American Profile of ISO 19115 can be provided using the ArcGIS metadata editor. Data is described

following the rules that are described in the data dictionary and on the UML diagrams provided in the profile

document.

Each metadata element’s value identifies the name of the ISO metadata element, and its parent elements.

Elements that can’t contain text will contain the appropriate data instead, such as a real number. NAP-specific

content is provided in all appropriate metadata elements.

This file’s content was exported to the ISO 19139 format using the ArcGIS to ISO 19139 translator; the file

NAPcontent_inArcGISeditor_export19139.xml was produced.

ArcGIS Metadata Toolkit 10.5.x—May 2017 10

The entire collection of sample metadata documents, used together with the Excel workbook, will provide you

with important information for determining which pages in the ArcGIS metadata editor must be customized to

meet your requirements.

Creating a custom metadata XSLT stylesheet for display
The ArcGIS metadata editor displays an item’s metadata using an XSLT 1.0 stylesheet. Two metadata stylesheets

are provided with ArcGIS for Desktop and used to display metadata. They are installed at <ArcGIS Installation

Location>\Metadata\Stylesheets. The ArcGIS_ItemDescription.xsl stylesheet is only used by the Item Description

metadata style. It displays only the description that is indexed for searching in ArcGIS for Desktop and published

with items to ArcGIS.com.

The ArcGIS.xsl stylesheet is used by all other metadata styles provided with ArcGIS for Desktop, which are

associated with different metadata standards. It displays the item description, complete ArcGIS metadata, and

any FGDC CSDGM-formatted metadata that may be present. If the item contains metadata in ISO 19139 format,

that information is displayed by the ArcGIS.xsl stylesheet with a different look and feel than ArcGIS metadata is

displayed. If the item is XML, but the data is not a recognized metadata format, the actual XML data is displayed.

If you look at the ArcGIS.xsl stylesheet in an XML editing application, you can see that it imports several auxiliary

XSLT stylesheets stored in the <ArcGIS Installation Location>\Metadata\Stylesheets\ArcGIS_Imports folder.

These stylesheets perform a variety of operations as described in the table below, including setting HTML styles

for display, interpreting codelist values, and handling different sets of metadata elements. The XSLT templates

used for display are determined based on tests that assess the type of XML that is present.

Creating a custom XSLT stylesheet
The ArcGIS metadata editor and the metadata geoprocessing tools are based on Microsoft .NET Framework,

which only supports XSLT 1.0. Only XSLT 1.0 stylesheets can be used to display and transform metadata.

The stylesheets used for display in ArcGIS must be created in a manner that is consistent with Microsoft .NET

Framework. For example, an XSLT 1.0 stylesheet that works in XML Spy or Firefox to display metadata stored in

XML format may not work as is in ArcGIS due to .NET Framework requirements. Some modifications may be

required for the stylesheet to work within ArcGIS. In the same manner, a stylesheet that works to display

metadata in ArcGIS may not work outside of ArcGIS in an application that is not based on .NET Framework.

The capabilities of XSLT 1.0 are unable to address all requirements for displaying metadata in ArcGIS 10.x. As a

result, the ArcGIS metadata editor and the XSLT Transformation geoprocessing tool provide some custom XSLT

functions that are used to process and format ArcGIS metadata XML content for display.

For example, HTML-style descriptions must be supported for publication to ArcGIS Online and Portal for ArcGIS.

When you provide an abstract for an item using the Item Description page’s Description element you can mark

up your text using different font styles, add links, and so on. This content is stored in ArcGIS metadata as

escaped HTML. Custom XSLT functions are used to decode the escaped HTML for display, and also to strip out

the HTML markup before exporting the content to a standard metadata format. These custom functions are not

available outside the ArcGIS metadata editor and the XSLT Transformation geoprocessing tool.

ArcGIS Metadata Toolkit 10.5.x—May 2017 11

An example of a custom metadata stylesheet is provided with this toolkit, XML.xsl. This stylesheet was created

by copying ArcGIS.xsl. Instead of importing all of the auxiliary XSLT stylesheets, it only imports XML.xslt, which

handles all aspects of displaying an XML document’s format. All the logic for determining the type of metadata

display is removed. The XML structure in which metadata is made available to the ArcGIS metadata editor is

always displayed. This view of metadata can be very useful, particularly when developing customizations. To use

this stylesheet, store a copy of the XML.xsl file in the <ArcGIS Installation Location>\Metadata\Stylesheets

folder. Then create a custom metadata style that uses this stylesheet for display.

A list of all the XSLT 1.0 stylesheets provided with ArcGIS for Desktop and used to display metadata content is

provided below.

XSLT File Explanation

ArcGIS.xsl Displays an item's complete metadata content. It is referenced by all
metadata styles except the default Item Description style.

ArcGIS_ItemDescription.xsl Displays only a concise description of the item. It is referenced by the
default Item Description metadata style.

ArcGIS_Imports/auxCountries.xslt Provides templates that evaluate two-letter and three-letter country
codes and displays the appropriate country name in their place.

ArcGIS_Imports/auxLanguages.xslt Provides templates that evaluate two-letter and three-letter language
codes and displays the appropriate language name in their place.

ArcGIS_Imports/auxUCUM.xslt Provides templates that evaluate unit-of-measure codes that follow the
Unified Code for Units of Measure convention, and display the
appropriate unit name in place of the code.

ArcGIS_Imports/codelists.xslt Provides templates that handle elements that store coded values. They
evaluate the code stored in the element and display the appropriate
text in its place.

ArcGIS_Imports/ESRIISO2.xslt Provides templates that display metadata content stored in the ArcGIS
metadata format.

ArcGIS_Imports/FGDC.xslt Provides templates that display metadata content stored in the FGDC
CSDGM XML format.

ArcGIS_Imports/general.xslt Defines the styles and JavaScript used by the HTML page, and provides
templates for handling different data types in a consistent manner. For
ArcGIS metadata elements, identifies the labels to be placed on the
HTML page when displaying their content.

ArcGIS_Imports/geoprocessing.xslt Provides templates that display ArcGIS metadata content that
exclusively describes geoprocessing tools.

ArcGIS_Imports/ISO19139.xslt Provides templates that display metadata content stored in the ISO
19139 XML format.

ArcGIS_Imports/ItemDescription.xslt Provides templates that create the concise description displayed at the
top of the page by both the ArcGIS.xsl and ArcGIS_ItemDescription.xsl
stylesheets.

ArcGIS_Imports/XML.xslt Provides templates that display the structure of an XML file as an HTML
document. Used by the ArcGIS.xsl stylesheet to display the contents of
XML files that don't follow the ArcGIS metadata format, the FGDC
CSDGM XML format or the ISO 19139 XML format.

ArcGIS Metadata Toolkit 10.5.x—May 2017 12

ArcGIS metadata stylesheets support localization
The stylesheets provided with ArcGIS for Desktop also support localization using standard software methods. To

accomplish this, all headings and other default strings are derived from resource files.

In the ItemDescription.xslt stylesheet, the Tags heading pictured in the above illustration is identified by the

following resource string identifier: <res:idTags />. The ArcGIS metadata editor substitutes the idTags resource

string for this element in the metadata display. When the language of ArcGIS for Desktop is changed using the

ArcGIS Administrator, these headings and default strings are displayed in the specified language. This capability

is only available in ArcGIS software and not if the stylesheet is used in an external application.

These string resources can be translated using the same ArcGIS for Desktop localization mechanisms used in

other parts of the software. An Esri distributor who wants to localize the text for this heading would translate

the idTags string in the ArcGIS metadata editor’s XsltResources library. Localization resources are only available

to Esri distributors; if they aren’t available to you, change this text in your custom metadata editor by replacing

the resource string identifier in the XSLT stylesheet with the text you prefer to use instead.

Stylesheets created for ArcGIS Desktop 9.3.1
The stylesheets that were provided with ArcGIS Desktop 9.3.1 for displaying metadata do not use W3C-

compliant technology. They do not work in Microsoft .NET Framework; therefore, they do not work in ArcGIS

10.x. The 9.3.1 stylesheets do not work in current web browsers to display the contents of XML files. Also, the

HTML pages produced by some of the stylesheets do not work in current web browsers. If you created a custom

stylesheet to display metadata in ArcGIS Desktop 9.3.1, you must upgrade the format of that stylesheet to XSLT

1.0 before it can be used in ArcGIS 10.x.

ArcGIS Metadata Toolkit 10.5.x—May 2017 13

Creating a custom metadata translator
Use the Export Metadata geoprocessing tool to export an item’s ArcGIS metadata to the appropriate standard

metadata XML format. When you run this tool, the Translator parameter doesn’t directly reference the XSLT

that performs the transformation. Instead, it references an XML configuration file—a Translator—that identifies

what operations to perform. The Translator files used by the current version of ArcGIS for Desktop to export

metadata only perform one operation; they call an XSLT 1.0 stylesheet to perform the transformation.

XSLT-based translators provided with ArcGIS for Desktop
The Translator files provided with ArcGIS for Desktop are installed at <ArcGIS Installation

Location>\Metadata\Translator. The XSLT transformations that export ArcGIS metadata to a standard-formatted

XML file are installed at <ArcGIS Installation Location>\Metadata\Translator\Transforms.

The translator used by the FGDC CSDGM Metadata style is ARCGIS2FGDC.xml. It calls the ArcGIS2FGDC.xsl XSLT

transformation to export ArcGIS metadata to an FGDC-formatted XML file.

The translator used by the ISO 19139 Metadata Implementation Specification, North American Profile of ISO

19115 2003, and INSPIRE Metadata Directive metadata styles is ARCGIS2ISO19139.xml. It calls the

ArcGIS2ISO19139.xsl XSLT transformation to export ArcGIS metadata to an ISO 19139-formatted XML file in a

manner that is appropriate for each of these metadata styles.

For transformations performed using XSLT, the translator XML file contains very little information. The ArcGIS to

ISO 19139 translator XML file has the following format:

<translator name="ARCGIS to ISO19139" xslt="Transforms\ArcGIS2ISO19139.xsl" logLevel="error"
stopOnErrors="no">
 <!-- empty -->
</translator>

The important information in this file is provided in the xslt attribute on the root element of the XML file,

translator. The xslt attribute identifies which XSLT file stored in the <ArcGIS Installation

Location>\Metadata\Translator directory should be used to transform the item’s metadata.

Customizing an XSLT transformation
If you want to modify the manner in which ArcGIS metadata is exported, make a copy of one of the XSLT

transformation files, and modify the copied file as appropriate. Very few modifications should be needed to

support the portions of your profile that are different from the base standard. After creating a custom XSLT

transformation to export metadata for your community, you must also create a translator XML file that calls the

appropriate XSLT transformation. For example, if your custom XSLT is named ArcGIS2ANZLIC.xsl, you would

create a translator XML file as follows:

<translator name="ARCGIS to ANZLIC" xslt="Transforms\ArcGIS2ANZLIC.xsl" logLevel="error" stopOnErrors="no">
 <!-- empty -->
</translator>

An example of a custom metadata translator is provided with this toolkit. A custom Translator configuration file

is provided, which references the custom XSLT transformation. The XSLT transformation that actually exports

ArcGIS Metadata Toolkit 10.5.x—May 2017 14

the metadata content was created by copying ArcGIS2FGDC.xsl and modifying the copied file. Handling for the

Metadata Standard Name element, metstdn, and Metadata Standard Version element, metstdv, is changed to

record a custom metadata profile name in those elements instead of the name and version of the base CSDGM

metadata standard when metadata is exported. Elements are also added on export to identify the document

that defines the custom CSDGM profile associated with the custom metadata style.

To use this translator, store a copy of the XSLT file in the <ArcGIS Installation

Location>\Metadata\Translator\Transforms folder, and store a copy of the translator XML file in the <ArcGIS

Installation Location>\Metadata\Translator folder. Then create a custom metadata style that uses this translator

to export metadata.

Configuring a metadata style
The settings defined in the metadata style determine how ArcGIS displays, edits, exports, and validates

metadata. Set the appropriate metadata style using any ArcGIS for Desktop application. The styles provided with

the software are installed at <ArcGIS Installation Location>\Metadata\Config. Files stored in this location with

the file extension .cfg appear in the Metadata Styles drop-down list in the Desktop application’s Options dialog

box on the Metadata tab.

A metadata style is an XML configuration file that defines the following properties.

Property Optionality Domain Explanation and XPath

Profile
Name

Required ItemDescription,
ISO19139, NAP,
INSPIRE, or
FGDC

Uniquely identifies the metadata standard or profile that is being
adhered to by the metadata style.

This name is recorded in the item’s metadata when it is edited
with the ArcGIS metadata editor and changes are saved. Both
translators and the metadata editor pages may handle content
differently based on this value.

XPath: /metadataConfig/@ArcGISProfile

Validate
Page
Content

Optional True or False Identifies if content will be validated by the ArcGIS metadata
editor while it is being edited.

When the ValidatePages attribute is True, content is validated by
the metadata editor according to the rules specified for each
page. When the attribute is False or absent, content is not
validated while you are editing metadata.

All metadata styles provided with ArcGIS for Desktop validate
metadata content in a manner that is appropriate for that style.

XPath: /metadataConfig/@ValidatePages

Translator Optional Relative File
Path

Determines how metadata is exported from the ArcGIS
metadata format to a metadata standard’s XML format.

ArcGIS Metadata Toolkit 10.5.x—May 2017 15

This value is appended to the ArcGIS for Desktop installation
location to locate a Translator configuration file. The translators
provided with ArcGIS for Desktop are installed in the <ArcGIS
Installation Location>\Metadata\Translators folder.

This value is used to automatically populate the Translator
parameter in the Export Metadata geoprocessing tool when you
click the Export and Validate buttons in the Description tab, or
when you click the Export Metadata and Validate Metadata
buttons on the Metadata toolbar in ArcCatalog.

If a value isn’t provided, the Export button won’t appear in the
Description tab. The Export Metadata button on the ArcCatalog
Metadata toolbar will still be available; a default Translator
won’t be provided when the Export Metadata tool is opened.

XPath: /metadataConfig/translator

Validation
Schema

Optional

Absolute File
Path, or URL

Determines the schema that will be used to validate exported
metadata using .NET Framework’s XML parser. Either an XML
Schema or an XML DTD can be used for validation.

ArcGIS metadata is exported to a standard XML format; then the
exported file is validated using the XML schema identified by this
value. Schemas are not provided with ArcGIS for Desktop to
validate standard metadata XML formats. Metadata is intended
to be validated using schemas provided by the standards
organizations. This value should provide a URL address or an
absolute file path to locate the appropriate XSD or DTD.

This value is used to automatically populate the Schema URL
parameter in the Validate Metadata geoprocessing tool when
you click the Validate button in the Description tab or the
Validate Metadata button on the ArcCatalog Metadata toolbar.
If a value isn’t provided, the Validate button won’t appear in the
Description tab. However, the Validate Metadata button will still
be available on the ArcCatalog Metadata toolbar—the Schema
URL parameter will be empty when the Validate Metadata tool
opens.

XPath: /metadataConfig/validationSchemaURL

Validation
Namespace

Optional

URI Identifies the XML namespace or element that will be validated
by the schema provided in the Validation Schema property.

If Validation Schema identifies an XML Schema, specify the
namespace that will be validated, if appropriate. Some XML
Schemas require you to specify a namespace, while others do
not. If Validation Schema identifies an XML DTD, specify the root
element of the exported XML document that will be validated.

ArcGIS Metadata Toolkit 10.5.x—May 2017 16

If a value isn’t provided and a Validation Schema is specified, a
default Namespace URI won’t be provided when the Validate
Metadata tool is opened.

XPath: /metadataConfig/validationNamespaceURI

Display
XSLT

Required

Relative File
Path, Absolute
File Path, or URL

Determines the XSLT 1.0 stylesheet that will be used to display
metadata in the Description tab.

An item’s metadata is made available to the ArcGIS metadata
editor as an XML document. To display this information, an XSLT
stylesheet generates an HTML page. The XSLT must operate in a
manner that is consistent with Microsoft .NET Framework; a
stylesheet that works in XML Spy or Firefox may not work in
ArcGIS due to .NET Framework requirements, even if it can
interpret the ArcGIS metadata format.

This value is appended to the ArcGIS for Desktop installation
location to locate a stylesheet. Two stylesheets are provided
with ArcGIS for Desktop that can be used for display: ArcGIS.xsl
and ArcGIS_ItemDesription.xsl. These files are installed in the
<ArcGIS Installation Location>\Metadata\Stylesheets folder.
Alternatively provide a URL address or an absolute file path to
locate the appropriate stylesheet.

If a value isn’t provided, the item’s metadata will be displayed
using the ArcGIS.xsl stylesheet. If the provided XSLT stylesheet
can’t be located, or it produces an error while generating the
HTML page, an error message will indicate this problem.

XPath: /metadataConfig/viewerXslt

Editor table
of contents
visibility

Optional

True or False Determines if the metadata editor’s table of contents is visible.

When the hideSidebar attribute is True, the table of contents is
hidden. The table of contents should be hidden only if the editor
has a single page. This setting is used with the Item Description
metadata style.

When the hideSidebar attribute is False or absent, the table of
contents is displayed. When many pages are available, you must
use the table of contents to access the available pages. This
setting is used by all metadata styles except Item Description.

XPath: /metadataConfig/editor/@hideSidebar

Editor table
of contents
sections

Required

Assembly-
Qualified Name
(AQN)

Determines how pages are grouped in the metadata editor’s
table of contents and the label associated with the group.

When many pages are available, they can be grouped into

ArcGIS Metadata Toolkit 10.5.x—May 2017 17

sections in the table of contents. Organizing the pages can make
it easier to identify the importance of a page and the content
with which it is associated. At least one section must be present
to contain the pages included in the editor. The Item Description
metadata style has a section that includes one page.

XPath: /metadataConfig/editor/forms/section/@class

Pages
included in
metadata
editor

Required

Assembly
Qualified Name
(AQN)

Determines the pages that are available when editing metadata
and the label that appears in the table of contents for a page.

Each page element identifies an XAML page that is included in
the ArcGIS metadata editor and adds it to the table of contents.
Pages are identified by Assembly Qualified Name (AQN). They
appear in the table of contents in the same order in which they
are provided in the configuration file.

All metadata styles should include the Item Description page.
This page is required to support ArcGIS software. Updated
metadata content is inserted into the associated map or layer
files and the ArcGIS for Desktop Search index. This page is
identified by the AQN:
ESRI.ArcGIS.Metadata.Editor.Pages.ItemInfo.

If the page identified by the fully qualified name or its assembly
can’t be found by the ArcGIS metadata editor, there will be an
empty entry in the editor’s table of contents. The page won’t
load because it can’t be found. For example, this might occur if
the assembly name or page name was spelled incorrectly.

XPath: /metadataConfig/editor/forms/section/page/@class

Page
validation
rules
evaluated
by the
metadata
editor

Optional

ArcGIS
metadata editor
validation rules

Determines the rules that will be used to evaluate the content
that may be entered on that page.

If a page has a validation element that contains a set of rules,
the ArcGIS metadata editor will use those rules to evaluate the
content associated with that page. If all rules pass, the page’s
icon in the table of contents will have a green check mark. If any
rule fails, the page’s icon will have a red X. The message
associated with a failed rule appears at the top of the page.

If a page element does not contain a validation group element,
no rules will be evaluated for this page. The page will always
have a plain icon in the metadata editor’s table of contents.

XPath: /metadataConfig/editor/forms/section/page/validation/*

You can learn more about how to configure a metadata style by looking at the examples provided below.

ArcGIS Metadata Toolkit 10.5.x—May 2017 18

The Item Description metadata style

The Item Description.cfg file has the following format:

<metadataConfig ArcGISProfile="ItemDescription" ValidatePages="True">
 <translator></translator>
 <validationNamespaceURI></validationNamespaceURI>
 <validationSchemaURL></validationSchemaURL>
 <viewerXslt>Metadata\Stylesheets\ArcGIS_ItemDescription.xsl</viewerXslt>
 <editor hideSidebar="True">
 <forms>
 <section class="ESRI.ArcGIS.Metadata.Editor.Sections.Overview">
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ItemInfo">
 <validation>

 <!-- title is required -->
 <exists xpath="/metadata/dataIdInfo/idCitation/resTitle[. != '']" ref="resTitle"/>

 <!-- summary (purpose) is required -->
 <for xpath="/metadata[not(tool)]">
 <exists xpath="dataIdInfo/idPurp[. != '']" ref="idPurp"/>
 </for>

 <!-- at least one tag is required -->
 <for xpath="/metadata/dataIdInfo/searchKeys">
 <exists xpath="bag[. != '']" ref="searchKeys"/>
 </for>

 </validation>
 </page>
 </section>
 </forms>
 </editor>
</metadataConfig>

This configuration defines a metadata style intended to describe items that will be shared using ArcGIS Online or

Portal for ArcGIS, by organizations with no obligation or desire to create standard-compliant metadata. The

Profile Name property has the value “ItemDescription”.

Descriptions authored with this metadata style are not intended to conform to a metadata standard. Therefore,

there is no reason to export the information to a standard-compliant XML format; the exported documents

wouldn’t be valid according to any standard XML schema because they would be missing required information.

Default values are not provided for the Translator, Validation Schema, and Validation Namespace properties; as

a result, the Export and Validate buttons do not appear in the Description tab.

Because only one page is included in the editor, its table of contents is hidden. One section is present, which

contains the Item Description page. Only the content that can be edited on the Item Description page is

displayed using the brief metadata stylesheet, ArcGIS_ItemDescription.xsl.

When items are published to ArcGIS Online, they must have a title, a brief summary, and at least one tag.

Therefore, the Validate Pages property has the value “True”, and validation rules requiring this information have

ArcGIS Metadata Toolkit 10.5.x—May 2017 19

been provided for the ItemInfo page. If any of the required metadata elements are missing from the item’s

metadata or if they are present but have no content, error messages will appear at the top of the page

indicating that the information is required, and the controls used to provide that information will have a red

background.

The FGDC CSDGM Metadata style

In contrast, the FGDC CSDGM Metadata.cfg file has the following overall format—the validation rules are

intentionally left out in the XML shown below because they are extensive:

<metadataConfig ArcGISProfile="FGDC" ValidatePages="True">
 <translator>Metadata\Translator\ArcGIS2FGDC.xml</translator>
 <validationNamespaceURI>metadata</validationNamespaceURI>
 <validationSchemaURL>http://www.fgdc.gov/schemas/metadata/fgdc-std-001-1998.dtd</validationSchemaURL>
 <viewerXslt>Metadata\Stylesheets\ArcGIS.xsl</viewerXslt>
 <editor>
 <forms>
 <section class="ESRI.ArcGIS.Metadata.Editor.Sections.Overview">
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ItemInfo"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.Keywords"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.DatasetCitation"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourceCitationContacts"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ContactManager"></page>
 </section>
 <section class="ESRI.ArcGIS.Metadata.Editor.Sections.Metadata">
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.MetadataDetails"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.MetadataContacts"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.MetadataMaintenance"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.MetadataConstraints"></page>
 </section>
 <section class="ESRI.ArcGIS.Metadata.Editor.Sections.Resource">
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourceDetails"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourceExtent"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourcePoc"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourceMaintenance"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourceConstraints"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.SpatialRepresentation"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ContentInformation"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.DataQuality"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.LI_Lineage"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.DistributionInfo"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.EntityAttributeInfo"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.References"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.GeoprocessingHistory"></page>
 </section>
 </forms>
 </editor>
</metadataConfig>

This configuration defines a metadata style that is intended to be used to author complete ArcGIS metadata

content that conforms to the FGDC CSDGM standard, and to share content outside of ArcGIS in the FGDC

CSGDM XML format. The Profile Name property has the value “FGDC”.

ArcGIS Metadata Toolkit 10.5.x—May 2017 20

A default value is provided for the Translator property to export metadata content to an FGDC CSDGM-

formatted XML file using the ArcGIS to FGDC translator provided with ArcGIS for Desktop. Default values are

provided for the Validation Schema and Validation Namespace properties to validate the exported FGDC

CSDGM-formatted XML file using the online FGDC CSDGM metadata DTD.

The pages used to author ArcGIS metadata content are divided into three sections: a general overview of the

item, details about the metadata itself, and detailed information about the item. The editor’s table of contents

will be visible because the hideSidebar attribute is not included. Complete ArcGIS metadata content is displayed

using the full metadata stylesheet, ArcGIS.xsl.

The FGDC CSDGM standard requires many metadata elements to be provided. In the version of the FGDC

CSDGM Metadata style used by ArcGIS for Desktop, many validation rules have been defined to guide people

through the process of creating CSDGM-compliant metadata content. Each page element contains the rules that

are appropriate to the metadata content managed by that page; you can see these rules if you look at the FGDC

CSDGM Metadata.cfg file in an XML editor. The Validate Pages property has the value “True” so the validation

rules will appear in the ArcGIS metadata editor.

Customizing a metadata style

There are several reasons to customize one of the metadata styles provided with ArcGIS. For example

 Use a different schema for validation.

 Use a different translator to export metadata.

 Use a custom XSLT stylesheet for display.

 Use a custom set of validation rules to evaluate content.

 Use a different set of pages to author content.

These are illustrated using examples below. In each case, a base metadata style configuration file should be

copied and given a new name. Make the desired modifications to the new metadata style configuration file.

Suppose you wanted to use the same FGDC metadata style provided with ArcGIS, illustrated above, but you

wanted to validate the metadata using a different XML schema instead of the online CSDGM XML DTD. To do so,

you would create a copy of the provided FGDC CSDGM Metadata.cfg file and name it Custom FGDC CSDGM

Metadata Schema.cfg, for example. Change the Validation Schema property to identify the location of the XML

schema to use instead, and change the Validation Namespace property appropriately for that schema.

For example, if you wanted to use the online CSDGM XML Schema, you would set the Validation Schema

property to “http://www.fgdc.gov/schemas/metadata/fgdc-std-001-1998.xsd” and set the Validation

Namespace property so it does not have a value. If your organization has a custom XML Schema that you use,

you can provide the appropriate internal location from which it can be accessed, either as a URL or as a UNC

path. In the same manner, if you are following the ISO metadata standards and you prefer to use a different set

of ISO XML Schemas for validation instead, you might change the Validation Schema URL currently used by the

ISO-based metadata styles. Please be aware that only some of the ISO metadata schemas that are available from

the OGC site will successfully validate ISO 19119 content describing services.

ArcGIS Metadata Toolkit 10.5.x—May 2017 21

If your metadata was created following a custom set of rules, you may want this fact to be reflected in any XML

files that are exported from ArcGIS. To do so, you would create a copy of the XSLT used to export metadata and

modify it to produce an output XML file in a manner appropriate for your metadata standard or profile. Then

create a custom Translator XML file that references the XSLT for exporting metadata.

An example of a custom Translator is provided with this toolkit that exports FGDC CSDGM metadata in the same

manner as the exporter provided with ArcGIS for Desktop, except the values recorded in the Metadata Standard

Name and Metadata Standard Version elements will be “Custom FGDC Metadata Rules” and “2011”,

respectively. A reference to a custom metadata profile document is also included in the exported XML file. To

use this example translator, copy the XSLT file ArcGIS2FGDCcustom.xsl to the <ArcGIS Installation

Location>\Metadata\Translator\Transforms folder and copy the translator XML file ARCGIS2FGDCcustom.xml to

the <ArcGIS Installation Location>\Metadata\Translator folder. Then change the Translator property in the new

metadata style configuration file to “Metadata\Translator\ARCGIS2FGDCcustom.xml”.

Similarly, you might want to use one of the metadata styles provided with ArcGIS for Desktop, but you have a

custom XSLT 1.0 stylesheet that you would prefer to use to display the metadata. For example, an XML.xsl

stylesheet is provided with this toolkit that allows you to see the XML format in which the metadata is made

available to the ArcGIS metadata editor. This view can be very useful at times. To use the provided XML

stylesheet for display, copy the ISO 19139 Metadata Implementation Specification.cfg file and name the copy

XML ISO 19139 Metadata Implementation Specification.cfg, for example. Copy the provided XML.xsl file to the

<ArcGIS Installation Location>\Metadata\Stylesheets folder. Then change the Display XSLT property in the new

metadata style configuration file to “Metadata\Stylesheets\XML.xsl”.

Suppose you generally want to follow the FGDC CSDGM guidelines, but you prefer to record a smaller amount of

information than it requires. You can leave the pages in the metadata editor as they are, but change the rules

that appear in the metadata editor to require less information. If you want to keep a page in the metadata

editor, but no information on that page should be considered required, remove the entire validation group of

elements. You can also delete individual rules from a page as appropriate. In this example, the Overview >

Citation page validation rules have been modified to eliminate all rules pertaining to optional metadata content

that may be provided; the change was made to a copy of the FGDC CSDGM Metadata.cfg file.

 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.DatasetCitation">
 <validation>
 <for xpath="//dataIdInfo/idCitation[resTitle | date]">

 <!-- title is required -->
 <exists xpath="resTitle[. != '']" ref="resTitle"/>

 <!-- publication date is required -->
 <exists xpath="date/pubDate[. != '']" ref="pubDate"/>

 </for>
 </validation>
 </page>

Adding custom validation rules is discussed in Customizing the validation rules for a page.

ArcGIS Metadata Toolkit 10.5.x—May 2017 22

Customizing the ISO 19139 metadata style for core elements, INSPIRE, and NAP

If you want to use the ISO 19139 Metadata Implementation Specification.cfg metadata style provided with

ArcGIS, but you prefer to maintain only the core set of information recommended by ISO 19115, you can create

a version of the provided metadata style configuration that includes fewer pages. To do this, copy the ISO 19139

Metadata Implementation Specification.cfg file and name it ISO 19139 Core Metadata Implementation

Specification.cfg. In the new metadata style configuration file, limit the page entries in each section as follows.

Mandatory, conditional, and optional core elements are indicated by (M), (C), and (O), respectively.

 Overview

o Item Description—ESRI.ArcGIS.Metadata.Editor.Pages.ItemInfo

 Abstract describing the dataset (M)

 Dataset title (M)

o Topics & Keywords—ESRI.ArcGIS.Metadata.Editor.Pages.Keywords

 Dataset topic category (M)

o Citation—ESRI.ArcGIS.Metadata.Editor.Pages.DatasetCitation

 Dataset title (M)

 Dataset reference date (M)

 Metadata

o Details—ESRI.ArcGIS.Metadata.Editor.Pages.MetadataDetails

 Metadata date stamp (M)

 Metadata language (C)

 Metadata file identifier (O)

 Metadata character set (C)

 The metadata character set is always UTF-8 when metadata is created,

upgraded, or processed in ArcGIS; therefore, the appropriate character set code

is always added by ArcGIS software.

o Contacts—ESRI.ArcGIS.Metadata.Editor.Pages.MetadataContacts

 Metadata point of contact (M)

 Resource

o Details—ESRI.ArcGIS.Metadata.Editor.Pages.ResourceDetails

 Dataset language (M)

 Dataset character set (C)

 The dataset character set is set by default to UTF-8, which is generally

appropriate for current data created with ArcGIS. However, this may not be

appropriate for the data format that is being used, the RDBMS code page, or the

version of ArcGIS that was used to initially create the data. You may need to

modify this value.

 Spatial resolution of the dataset (O)

 Spatial representation type (O)

o Extent—ESRI.ArcGIS.Metadata.Editor.Pages.ResourceExtent

 Geographic location of the dataset (by four coordinates or by geographic identifier) (C)

ArcGIS Metadata Toolkit 10.5.x—May 2017 23

 Additional extent information for the dataset (vertical and temporal) (O)

o Points of Contact—ESRI.ArcGIS.Metadata.Editor.Pages.ResourcePoc

 Dataset responsible party (O)

o Spatial Reference—ESRI.ArcGIS.Metadata.Editor.Pages.ReferenceSystem

 Reference system (O)

o Lineage—ESRI.ArcGIS.Metadata.Editor.Pages.LI_Lineage

 Lineage (O)

o Distribution—ESRI.ArcGIS.Metadata.Editor.Pages.DistributionInfo

 Distribution format (O)

The ISO core elements Metadata standard name (O) and Metadata standard version (O) are always added

automatically when metadata is exported to the ISO 19139 XML format based on the Profile Name property in

the metadata style configuration file. These elements are not available in the editor. If they were included in the

editor and contained manually provided content, and you later change the metadata style used by ArcGIS, those

values would no longer be appropriate.

If you want to include geoprocessing operations in the resource’s lineage, you might also include the

Geoprocessing History page—ESRI.ArcGIS.Metadata.Editor.Pages.GeoprocessingHistory.

If you were interested in documenting services following ISO 19119, you might also want to include the Service

Details page—ESRI.ArcGIS.Metadata.Editor.Pages.Services.

The modified configuration file, without any validation rules, would look like this:

<metadataConfig ArcGISProfile="ISO19139">
 <translator>Metadata\Translator\ESRI_ISO2ISO19139.xml</translator>
 <validationNamespaceURI>http://www.isotc211.org/2005/gmd</validationNamespaceURI>
 <validationSchemaURL>http://www.isotc211.org/schemas/2005/gmd/metadataEntity.xsd</validationSchemaURL>
 <viewerXslt>Metadata\Stylesheets\ArcGIS.xsl</viewerXslt>
 <editor>
 <forms>
 <section class="ESRI.ArcGIS.Metadata.Editor.Sections.Overview">
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ItemInfo"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.Keywords"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.DatasetCitation"></page>
 </section>
 <section class="ESRI.ArcGIS.Metadata.Editor.Sections.Metadata">
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.MetadataDetails"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.MetadataContacts"></page>
 </section>
 <section class="ESRI.ArcGIS.Metadata.Editor.Sections.Resource">
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourceDetails"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.Services"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourceExtent"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ResourcePoc"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ReferenceSystem"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.LI_Lineage"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.DistributionInfo"></page>
 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.GeoprocessingHistory"></page>
 </section>

ArcGIS Metadata Toolkit 10.5.x—May 2017 24

 </forms>
 </editor>
</metadataConfig>

If you are using the North American Profile or INSPIRE metadata styles, you should also include the Locales—

ESRI.ArcGIS.Metadata.Editor.Pages.Locales—page if you plan to provide any information about the item in

another language using the ArcGIS metadata editor.

For the INSPIRE metadata style, the following pages must be included in the Resource section to provide content

required by the INSPIRE Metadata Directive:

 Resource

o Constraints—ESRI.ArcGIS.Metadata.Editor.Pages.ResourceConstraints

 Limitation of public access information (M)

o Quality—ESRI.ArcGIS.Metadata.Editor.Pages.DataQuality

 Conformity with the INSPIRE specification description (M)

The INSPIRE Metadata Directive indicates that Conformity with the INSPIRE specification description should be

indicated by providing a data quality report of the type Domain Consistency that identifies the specification that

was followed.

Including custom pages

If you create a custom page for the ArcGIS metadata editor, you must also create a custom metadata style that

loads the custom page into the editor. Any libraries containing custom pages should be distributed along with a

custom metadata style so a person can immediately use the custom pages. Copy the appropriate metadata style

and add your custom page to it.

If your custom page does not have any validation rules, it can be added to the appropriate section using the

following format. A metadata style may include pages from several different custom libraries.

 <page class="[Namespace].[Page class name],[Assembly name]"></page>

The namespace, page class name, and assembly name are all case-sensitive. Examples of building custom pages

and adding them to a custom metadata style are provided later in this document.

If you don’t want to build the samples from scratch, some example Visual Studio projects and custom metadata

styles are provided. Open and build the Custom Pages project and copy the resulting CustomPages.dll to the

<ArcGIS Installation Location>\bin folder. Copy the custom CustomPages.cfg metadata style to the <ArcGIS

Installation Location>\Metadata\Config folder. Copy the custom XML.xsl stylesheet to the <ArcGIS Installation

Location>\Metadata\Stylesheets folder.

After adding a custom metadata style to the <ArcGIS Installation Location>\Metadata\Config folder, the next

time the Options dialog box is opened for an ArcGIS for Desktop application, the new style will appear in the

Metadata Style list. When you click Apply or OK, the Windows registry is updated to reference the appropriate

ArcGIS Metadata Toolkit 10.5.x—May 2017 25

metadata style configuration file at HKEY_CURRENT_USER\Software\ESRI\Desktop10.5\Metadata\Config. The

CurrConfig value is set to the name of the configuration file without the .cfg file extension. The metadata style

identified in the registry will be consulted when any ArcGIS for Desktop application accesses and manages an

item’s metadata to determine which settings to use.

If you select the Custom Pages metadata style, the metadata display shows the metadata’s XML structure. If you

edit an item’s metadata, a custom Tracking Info page appears in the ArcGIS metadata editor’s table of contents

following the Item Description page. After saving your changes, you can see the custom metadata elements

added by the custom page in the item’s metadata content.

Tip: If the Description tab is being used when you change the metadata style, click another tab and click

the Description tab again to reload the ArcGIS metadata editor in the Description tab with all of the new

metadata style’s settings.

Overview of the ArcGIS metadata editor application
The ArcGIS metadata editor is a Windows Presentation Foundation (WPF) application that is written using C#. It

is fundamentally a two-panel application, where one panel displays the metadata and the other panel edits the

metadata. These panels sit on top of each other—you can only see one at a time. When you start viewing

metadata, the editor panel is visible. When you are viewing metadata the display panel is visible.

The editing panel provides access to a collection of pages. Each page is a form with data entry controls that edit

a portion of an item’s metadata. Each page is a WPF User Control—an Extensible Application Markup Language

(XAML) page. Because many pages are required to author a complete metadata document, they are organized

into sections in the editor’s table of contents.

The editor’s XAML pages use standard XML data binding to connect the WPF controls on the page to the item’s

metadata XML document. Bi-directional binding ensures that updates in a text box or another data entry control

result in changes to the XML element or attribute bound to the control. Also, updates to the XML document will

appear in the controls bound to the updated elements on a page.

Each page must implement the EditorPage class defined within the ArcGIS MetadataEditor assembly. Editor

pages may either be a complete page that has an entry in the editor’s table of contents—a front page —or a

reusable group of controls that can be added to other pages—a subpage.

A typical page will

 Declare namespaces.

 Use the Loaded event handler to initialize the underlying metadata XML.

 Define the metadata XML fragment to which the controls on the page will bind.

 Define additional XML data that will be used in or added to the page.

 Include a grid.

 Identify the page as a front page or subpage.

 Include a ListBox with an ItemsSource attribute that identifies the base XPath for a group of controls.

ArcGIS Metadata Toolkit 10.5.x—May 2017 26

 Provide controls for editing metadata elements.

All controls on a page should have ToolTips. A control’s ToolTip is displayed in the Help panel at the bottom of

the metadata editor when you hover over the control.

A page may also implement validation rules that the ArcGIS metadata editor application uses to evaluate the

metadata XML. If the rules determine that required content is missing that may be provided using controls on

the page

 Error messages that specify what content should be provided will be displayed at the top.

 The controls used to provide that content will have a red background.

 The icon in the editor’s table of contents will have a red X.

If the rules determine that no required content is missing that may be provided using controls on the page, the

icon in the editor’s table of contents will have a green check mark.

Creating a custom metadata page
The following instructions outline how you would create a custom metadata editor page from scratch.

1. Start Visual Studio.

2. Create a new project.

3. Choose to create a new Visual C# WPF Application project. Set the Target framework to .NET Framework

4.5. At the bottom of the New Project dialog box, provide a name for the project such as CustomPages.

4. Click OK.

5. Open the project’s Properties and provide appropriate names for your assembly and its default

namespace. For example, use the assembly name CustomPages and the namespace CustomPageNS. Set

the application’s output type to Class library. The Target Framework should be .NET Framework 4.5.

ArcGIS Metadata Toolkit 10.5.x—May 2017 27

6. Delete the automatically generated XAML pages that are added to the new project, for example,

App.xaml and MainWindow.xaml.

7. Add a reference to ESRI.ArcGIS.MetadataEditor.dll, which is installed with ArcGIS for Desktop at <ArcGIS

Installation Location>\bin, by browsing to that location.

8. Add a new User Control to the project.

ArcGIS Metadata Toolkit 10.5.x—May 2017 28

9. Provide an appropriate name for this new WPF User Control such as MyPage1.xaml.

10. Open the .xaml.cs file containing the C# code associated with the new page.

ArcGIS Metadata Toolkit 10.5.x—May 2017 29

11. To the bottom of the list of declarations, add a line referencing the ESRI.ArcGIS.Metadata.Editor.Pages

namespace.

using ESRI.ArcGIS.Metadata.Editor.Pages;

12. Indicate that the new page will inherit from the EditorPage class in the ArcGIS MetadataEditor assembly

by changing the public partial class declaration from UserControl to EditorPage.

namespace CustomPageNS

{

 /// <summary>

 /// Interaction logic for MyPage1.xaml

 /// </summary>

 public partial class MyPage1 : EditorPage

 {

 InitializeComponent();

 }

}

13. Open the CustomPages project’s properties and click the Resources tab.

In the toolbar at the top of the Resource Designer, make sure the resource view is set to Strings, which is

the default setting. Also, set the Access Modifier for these resources to Public.

14. Add some string resources to the project. The text that appears in the ArcGIS metadata editor in

connection with the custom page will be derived from this string resources table. Strings are needed for

the page entry in the editor’s table of contents and for the page title. The table of contents string should

be short to help minimize the default width of the table of contents. The string that appears at the top

of the page as its title can be longer and more complete.

To add a string resource, click the Name column of the row marked with an asterisk (*) and replace the

default string, String1, with an appropriate identifier for the string resource. Then, in the Value column,

type the phrase that will appear in the metadata editor. For this example, the LABEL_SIDEBAR string will

be used for the page’s entry in the table of contents: Tracking Info. The LABLE_TITLE string will be used

as the title that appears on the page itself: Internal Tracking Information.

ArcGIS Metadata Toolkit 10.5.x—May 2017 30

15. In the .xaml.cs file, define the page’s SidebarLabel property; it will return the string for the page’s entry

in the editor’s table of contents to the ArcGIS metadata editor application. For example, this property

can return the LABEL_SIDEBAR string resource by specifying Properties.Resources.LABEL_SIDEBAR.

namespace CustomPageNS

{

 /// <summary>

 /// Interaction logic for MyPage1.xaml

 /// </summary>

 public partial class MyPage1 : EditorPage

 {

 public MyPage1()

 {

 InitializeComponent();

 }

 public override string SidebarLabel

 {

 get

 {

 return Properties.Resources.LABEL_SIDEBAR;

 }

 }

 }

}

16. Save your changes, and close the .xaml.cs file.

17. Open the .xaml file for the new page.

18. Maximize the XAML pane associated with this page.

19. Delete all the content that was added to this file by default.

20. Add a root element that declares the control to be an EditorPage, with the appropriate namespaces and

event handlers as illustrated below. Any ArcGIS metadata editor namespaces must include its assembly.

If a control provided by the WPF Toolkit is used on a page, the appropriate namespace must also be

provided. All contents in this file are case-sensitive. When declaring the page’s class and its properties,

make sure the namespace matches the assembly namespace and the class name matches the class

name as declared in the .xaml.cs file.

ArcGIS Metadata Toolkit 10.5.x—May 2017 31

<pages:EditorPage x:Class="CustomPageNS.MyPage1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:r="clr-namespace:CustomPageNS.Properties"

 xmlns:pages="clr-

namespace:ESRI.ArcGIS.Metadata.Editor.Pages;assembly=ESRI.ArcGIS.Metad

ataEditor"

 Loaded="FillXml">

</pages:EditorPage>

21. The controls on an XAML page must bind to specific XML elements; those elements must exist in the

metadata XML document for the page to work. An ArcGIS metadata editor page must have a resource

that provides an XML fragment to which the controls can bind. The XML elements in the fragment will

be added to the metadata if they don’t already exist.

The way XAML forms typically work, if content isn’t provided when the page is used or if the content

provided isn’t saved, the XML elements that were added by the XML fragment will remain saved in the

document without any content. This is a problem for metadata documents, which have strict validation

rules. The presence of an optional element can trigger validation rules that require additional

information. Also, empty elements are considered errors when metadata is validated with an XML

schema. A metadata XML document can’t include empty XML elements. Therefore, the ArcGIS metadata

editor always ensures that any empty XML elements are removed before the metadata is saved.

The XmlDataProvider resource below provides the XML fragment with the unique Key XmlRecord.

<pages:EditorPage … >

 <UserControl.Resources>

 <XmlDataProvider x:Key="XmlRecord" XPath="/"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

 <x:XData>

 <ANY xmlns="">

 <metadata>

 <myData>

 <trackingPosition>0000</trackingPosition>

 <trackingStatus>editing</trackingStatus>

 </myData>

 </metadata>

 </ANY>

 </x:XData>

 </XmlDataProvider>

 </UserControl.Resources>

</pages:EditorPage>

In this example, the custom metadata elements trackingPosition and trackingStatus are added to a

custom myData section in the item’s metadata and the elements include default values. Custom

ArcGIS Metadata Toolkit 10.5.x—May 2017 32

metadata elements are allowed in ArcGIS metadata. They must be added within a separate section of

the ArcGIS metadata XML document that is unique for your organization. The XSLT stylesheet used to

display metadata must be updated to show any information the custom elements contain.

22. If any additional resources are required, add them to the page. Each resource must have a unique Key.

This example provides a set of values for a custom drop-down list as XML data with the Key

OrgStatusCodes.

<pages:EditorPage … >

 <UserControl.Resources>

 <XmlDataProvider x:Key="XmlRecord" XPath="/"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

 …

 </XmlDataProvider>

 <XmlDataProvider x:Key="OrgStatusCodes" XPath="/"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

 <x:XData>

 <ANY xmlns="">

 <statuscodes>

 <status>editing</status>

 <status>complete</status>

 <status>reviewed</status>

 <status>published</status>

 <status>rejected</status>

 </statuscodes>

 </ANY>

 </x:XData>

 </XmlDataProvider>

 </UserControl.Resources>

</pages:EditorPage>

23. Controls on the page are positioned using a stack panel within a top-level grid. Place these on the page

following its resources. A page that has an entry in the table of contents has the EditorFrontPageStyle.

<pages:EditorPage>

 <UserControl.Resources>

 …

 </UserControl.Resources>

 <Grid Style="{DynamicResource EditorFrontPageStyle}">

 <StackPanel>

 …

 </StackPanel>

 </Grid>

</pages:EditorPage>

24. The first control on the page is always the page title, which is the first child of the stack panel. The page

title is displayed using a Label control that has the style EditorPageTitle. The Label control’s Content

ArcGIS Metadata Toolkit 10.5.x—May 2017 33

attribute specifies its text; identify the LABEL_TITLE string resource by typing r:Resources.LABEL_TITLE.

When the namespaces were defined for this XAML page, xmlns:r was set appropriately to allow you to

access the project’s properties.

<Grid Style="{DynamicResource EditorFrontPageStyle}">

 <StackPanel>

 <!-- page title -->

 <Label Style="{DynamicResource EditorPageTitle}"

 Content="{x:Static r:Resources.LABEL_TITLE}"/>

 …

 </StackPanel>

</Grid>

25. Add string resources for the two controls that will be added to the custom page to edit the

trackingPosition and trackingStatus metadata elements. On the Resources tab in the project’s

properties, provide strings to label these controls with resource identifiers such as LABEL_POSITION and

LABEL_STATUS. ToolTip strings are also needed for these controls to describe the content that should be

provided in each case. For example, add strings with the resource identifiers, LABEL_POSITION_TIP and

LABEL_STATUS_TIP. Sample text for these strings is illustrated below.

26. On the XAML page, prepare to add controls that allow you to manipulate the metadata content. These

will be added to the stack panel below the Label that provides the page title.

Because more than one control will be used to edit a set of metadata elements that begin with the same

XPath, these controls should be organized and positioned on the page within a list box. The ListBox

control identifies the base XPath from which its controls will operate: /metadata/myData. Because there

are multiple controls in the group, add a stack panel inside the ListBox as illustrated below.

<StackPanel>

 <!-- page title -->

 <Label Style="{DynamicResource EditorPageTitle}"

 Content="{x:Static r:Resources.LABEL_TITLE}"/>

ArcGIS Metadata Toolkit 10.5.x—May 2017 34

 <!-- custom metadata elements -->

 <ListBox Style="{DynamicResource EditorNoScrollListBoxStyle}"

 ItemsSource="{Binding XPath=/metadata/myData}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate >

 </ListBox>

</StackPanel>

27. Add a control that edits the trackingPosition element. A Label must be provided to identify the metadata

element, along with a TextBox control that allows you to edit its content. These controls are grouped

together using a dock panel, which is placed within the list box’s stack panel.

Set the Label control’s Content attribute to use the LABEL_POSITION string resource. Set the TextBox

control’s ToolTip attribute to use the LABEL_POSITION_TIP string resource. When using the ArcGIS

metadata editor, if you hover over the text box, its ToolTip string will appear in the Help panel at the

bottom of the editor. Set the controls to use the same style as other controls in the editor.

Complete the binding to the metadata XML document by specifying the remainder of the XPath for the

metadata element associated with the TextBox control. Set the TextBox control’s XPath to

trackingPosition. Any text provided with this control will be stored in the metadata XML document in

the following location: /metadata/myData/trackingPosition.

<StackPanel>

 <!-- page title -->

 <Label Style="{DynamicResource EditorPageTitle}"

 Content="{x:Static r:Resources.LABEL_TITLE}"/>

 <!-- custom metadata elements -->

 <ListBox Style="{DynamicResource EditorNoScrollListBoxStyle}"

 ItemsSource="{Binding XPath=/metadata/myData}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel>

 <!-- tracking position -->

 <DockPanel LastChildFill="True"

 HorizontalAlignment="Stretch">

 <Label DockPanel.Dock="Left"

 Style="{DynamicResource EditorHLabelNoIdentStyle}"

 Content="{x:Static r:Resources.LABEL_POSITION}"/>

 <TextBox ToolTip="{x:Static r:Resources.LABEL_POSITION_TIP}"

 Style="{DynamicResource EditorTextBoxStyle}"

 Text="{Binding XPath=trackingPosition, Mode=TwoWay}"/>

 </DockPanel>

ArcGIS Metadata Toolkit 10.5.x—May 2017 35

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate >

 </ListBox>

</StackPanel>

28. Add controls to the list box’s stack panel to edit the trackingStatus element. A Label must be provided to

identify the metadata element, along with a ComboBox control to edit its content. These controls are

grouped together using a second dock panel.

Set the Label control’s Content attribute to use the LABEL_STATUS string resource. Set the ComboBox

control’s ToolTip attribute to use the LABEL_STATUS_TIP string resource. Set the controls to use the

same style as other controls in the editor.

The values that will appear in the drop-down list were defined as a resource for this page in the

XmlDataProvider with the Key OrgStatusCodes. To display these values in the list, set the ComboBox

control’s ItemsSource property to use the resource with the OrgStatusCodes Key, and use its XPath

property to select data from the status elements in that resource. The values that will appear in the list

are the values stored in the status XML elements.

Meanwhile, the ComboBox.SelectedValue binding determines where the selected value will be stored in

the item’s metadata. Its XPath property specifies the remainder of the XPath that was started by the

ListBox; when set to trackingStatus, the value selected in the ComboBox will be stored in the metadata

XML document in the following location: /metadata/myData/trackingStatus.

<ListBox Style="{DynamicResource EditorNoScrollListBoxStyle}"

 ItemsSource="{Binding XPath=/metadata/myData}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel>

 <!-- tracking position -->

 <DockPanel LastChildFill="True"

 HorizontalAlignment="Stretch">

 …

 </DockPanel>

 <!-- tracking status -->

 <DockPanel LastChildFill="True"

 HorizontalAlignment="Stretch">

 <Label DockPanel.Dock="Left"

 Style="{DynamicResource EditorHLabelNoIdentStyle}"

 Content="{x:Static r:Resources.LABEL_STATUS}"/>

 <ComboBox ToolTip="{x:Static r:Resources.LABEL_STATUS_TIP}"

 Loaded="PostProcessComboBoxValues"

ArcGIS Metadata Toolkit 10.5.x—May 2017 36

 SelectionChanged="ComboBoxSyncSelectionChanged"

 Style="{DynamicResource EditorHComboBoxStyle}"

 IsEditable="False"

 ItemsSource="{Binding Source={StaticResource

 OrgStatusCodes}, XPath=//status}"

 DisplayMemberPath="."

 SelectedValuePath=".">

 <ComboBox.SelectedValue>

 <Binding XPath="trackingStatus" Mode="TwoWay"/>

 </ComboBox.SelectedValue>

 </ComboBox>

 </DockPanel>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate >

</ListBox>

29. Close any XAML pages that are open in Visual Studio.

30. Build the Visual Studio project to create a Release DLL for Any CPU. This creates a .dll in the project’s bin

folder. Make sure there are no errors that prevent the project from building successfully.

31. Copy the resulting .dll file, such as CustomPages.dll, to the <ArcGIS Installation Location>\bin folder.

32. Create a custom metadata style that will load the custom page into the ArcGIS metadata editor. In the

<ArcGIS Installation Location>\Metadata\Config folder, make a copy of the configuration file for the

metadata style you would normally use. For example, if you would normally use the FGDC CSDGM

Metadata style, copy the FGDC CSDGM Metadata.cfg file. Give the copied file an appropriate name such

as My FGDC CSDGM Metadata; this is how the metadata style will appear in the Metadata Style drop-

down list in the Options dialog box.

33. Open the new metadata style configuration file in an XML editor such as Visual Studio.

34. Edit the custom metadata style configuration file to include the custom page in the ArcGIS metadata

editor for this metadata style.

Add a new page element to the configuration file in the appropriate location. For example, if you add it

after the closing tag for the ItemInfo page, the custom page will appear in the Overview section after the

Item Description page.

Add a class attribute to the page element using the following format:

<page class="[Namespace].[Page class name],[Assembly name]"></page>

For this example, the project’s namespace is CustomPageNS, the page’s class name is MyPage1, and the

project’s assembly name is CustomPages. The assembly, namespace, and class names are all case-

sensitive. This page’s entry in the metadata style configuration file would look like the example below.

ArcGIS Metadata Toolkit 10.5.x—May 2017 37

<section class="ESRI.ArcGIS.Metadata.Editor.Sections.Overview">

 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ItemInfo">

 <validation>

 …

 </validation>

 </page>

 <page class="CustomPageNS.MyPage1,CustomPages"/>

 …

</section>

When this custom metadata style is used in ArcGIS, all pages in the metadata editor are derived from

the ESRI.ArcGIS.MetadataEditor.dll that is provided with ArcGIS for Desktop, except the custom Tracking

Info page. The MyPage1 page will be loaded into the ArcGIS metadata editor from the CustomPages.dll.

35. Save the changes that have been made to the My FGDC CSDGM Metadata.cfg file and close the file.

36. Start an ArcGIS for Desktop application such as ArcCatalog.

37. Open the application’s Options dialog box, for example, by clicking Customize > ArcCatalog Options.

38. Click the Metadata tab.

39. Choose the custom metadata style in the drop-down list, for example, My FGDC CSDGM Metadata.

40. Click OK.

41. View an item’s metadata in the Description Tab.

If the ArcGIS for Desktop application was already running and the Description tab was active, click

another tab and click the Description tab again to reload the ArcGIS metadata editor based on the new

metadata style’s configuration.

42. Click Edit.

43. The custom page appears in the appropriate place in the ArcGIS metadata editor’s table of contents

alongside the standard metadata editor pages provided with ArcGIS. Click the Tracking Status drop-

down list. Select a value in this list.

ArcGIS Metadata Toolkit 10.5.x—May 2017 38

44. Click Save.

If you examine the XML structure of the item’s metadata, you can see that the following custom content is now

included in the document alongside the rest of the ArcGIS metadata content.

<metadata>

 <myData>

 <trackingPosition>quality assurance</trackingPosition>

 <trackingStatus>reviewed</trackingStatus>

 </myData>

</metadata>

If you were to provide this custom page to someone else, it should be accompanied by a custom metadata

stylesheet that is able to display the content that may be provided in the custom metadata elements. The

custom metadata style that includes the custom page in the metadata editor must also reference the custom

stylesheet that should be used for the metadata display.

Modifying the pages provided with the ArcGIS metadata editor
The complete source code for the pages provided with the ArcGIS metadata editor in ArcGIS for Desktop 10.5.x

is provided with this toolkit in the CustomMetadataEditor Visual Studio project.

While the code for the pages is the same as that provided in the ESRI.ArcGIS.MetadataEditor.dll, this project is

designed to use a different namespace and compile the pages into an assembly with a different name—this

allows pages provided with ArcGIS to be combined with custom pages without conflict. The default namespace

CustomMetadataEditor and default build target CustomMetadataEditor.dll are used; these should be changed to

more appropriate names before any customizations are distributed.

The CustomMetadataEditor project uses the following set of folders:

 Icons—The graphic icons used throughout the editor

 Pages—The WPF user controls that define the forms for editing metadata

 Properties—The string resources and code lists used in the editor

 Themes—The location of generic.xaml containing all the visual styles used in the project

ArcGIS Metadata Toolkit 10.5.x—May 2017 39

The following steps are required to build and test the toolkit’s custom metadata pages with the provided

CustomMetadataEditor solution.

1. Copy the contents CustomMetadataEditor Source folder for the appropriate version of Visual Studio to a

suitable location.

2. Open the CustomMetadataEditor solution in Visual Studio.

3. Examine the project’s references in the Solution Explorer window. Add references to the files listed

below by clicking the Project > Add Reference menu option. Use the Browse tab to browse to and select

these files in the <ArcGIS Installation Location>\bin folder. As each reference is added, the warning

symbol for that file will disappear in the Solution Explorer window.

 ESRI.ArcGIS.ItemIndex.dll

 ESRI.ArcGIS.MetadataEditor.dll

 ESRI.ArcGIS.SearchCore.dll

 WPFToolkit.dll

If you have trouble adding a reference to the project, remove the existing broken reference and add the

reference again.

4. Build the CustomMetadataEditor project. This creates a new CustomMetadataEditor.dll in the project’s

bin folder.

5. Copy the CustomMetadataEditor.dll to the <ArcGIS Installation Location>\bin folder.

6. Copy the Custom Metadata Editor All Pages.cfg metadata style configuration file from the ArcGIS

Metadata Toolkit 10.5\Examples\custom metadata styles folder to the <ArcGIS Installation

Location>\Metadata\Config folder.

7. The Custom Metadata Editor All Pages.cfg metadata style uses the XML.xsl stylesheet provided with this

toolkit for display. Copy this custom stylesheet from the ArcGIS Metadata Toolkit 10.5\Examples\custom

display folder to <ArcGIS Installation Location>\Metadata\Stylesheets.

8. Start an ArcGIS for Desktop application such as ArcCatalog.

9. Open the application’s Options dialog box, for example, by clicking Customize > ArcCatalog Options.

10. Click the Metadata tab.

11. Choose the Custom Metadata Editor All Pages style in the drop-down list.

12. Click OK.

13. If the Description tab is active, click another tab and click the Description tab again to reload the ArcGIS

metadata editor based on the new configuration.

14. View an item’s metadata in the Description Tab.

15. Click Edit. All pages provided with ArcGIS are present in the editor; the pages provided with ArcGIS for

Desktop are replaced by the equivalent pages derived from the CustomMetadataEditor.dll.

This document does not intend to provide a complete tutorial for modifying the pages in the ArcGIS metadata

editor or detailed XAML programming instructions.

Customizations should be made to the provided XAML pages and string resources as needed.

ArcGIS Metadata Toolkit 10.5.x—May 2017 40

It is not recommended to remove XAML pages from the Visual Studio project that will not be customized. There

are many dependencies between different pages, subpages, and resources. If a page is removed but later you

want to add the page back to the project, it may be difficult to reestablish the dependencies properly.

Custom metadata editor pages should be accompanied by a custom metadata style configuration file that

deploys those pages. When creating this custom metadata style, any pages included in the custom style that

were not customized should be derived from the ArcGIS metadata editor assembly provided with ArcGIS for

Desktop rather than the custom metadata editor assembly. This way, anyone using the custom style will be able

to take advantage of fixes or enhancements to those pages that may be provided with ArcGIS for Desktop

Service Packs.

Distributing ArcGIS metadata customizations
Customizations should be provided using an installer that correctly adds the custom metadata configuration files

to the appropriate ArcGIS for Desktop folders.

 <ArcGIS Installation Location>\bin—.dlls that provide custom metadata pages

 <ArcGIS Installation Location>\Metadata\Config—custom metadata style configuration file

 <ArcGIS Installation Location>\Metadata\Stylesheets—custom metadata XSLT stylesheet for display

 <ArcGIS Installation Location>\Metadata\Translator—custom translator configuration file for exporting

metadata

 <ArcGIS Installation Location>\Metadata\Translator\Transforms—custom XSLT transformations for

importing or exporting metadata

If customizations are being deployed internally, an installer may set the appropriate registry key to ensure that

the custom metadata style is automatically selected on behalf of the people within that organization.

When an update is provided for ArcGIS for Desktop, .dlls that provide custom metadata pages must be

recompiled against the new version of the ESRI.ArcGIS.MetadataEditor.dll.

Customizing the contents of a drop-down list
One of the most common customizations that would require you to change a page that has been provided with

ArcGIS for Desktop involves changing the values included in a drop-down list. The following steps walk you

through the process of changing a drop-down list’s values on an existing page in the ArcGIS metadata editor.

In this example, the ArcGIS metadata editor’s Content page will be modified to add custom values to the

Content Type drop-down list. The values that are currently included in the Content Type drop-down list are

defined by ISO 19115 and are illustrated below.

ArcGIS Metadata Toolkit 10.5.x—May 2017 41

In the ISO 19115 metadata standard, the MD_CoverageDescription class defines general content for describing a

raster dataset. That general content includes the Content Type codelist, which is used to describe the type of

data stored in a raster dataset. MD_ImageDescription is a subclass of MD_CoverageDescription; it inherits the

content defined by MD_CoverageDescription and adds content for describing a raster dataset’s cell values.

Because the MD_CoverageDescription content appears in more than one place, the controls used to enter the

content in the ArcGIS metadata editor are defined in their own XAML page: MD_CoverageDescriptionBase.xaml.

Both the MD_CoverageDescription.xaml page and the MD_ImageDescription.xaml page reference the controls

defined by the MD_CoverageDescriptionBase.xaml page. For example, the MD_CoverageDescription.xaml page

references the controls like this:

<Grid Style="{DynamicResource EditorSubPageStyle}">

 <pages:MD_CoverageDescriptionBase/>

</Grid>

In turn, the ContentInformation.xaml page references the controls defined by the

MD_CoverageDescription.xaml and MD_ImageDescription.xaml pages. When the project is compiled, the

controls defined by the MD_CoverageDescriptionBase.xaml page are included in the editor in both the Coverage

Description and Image Description sections.

ArcGIS Metadata Toolkit 10.5.x—May 2017 42

To change the values in the Content Type drop-down list, the MD_CoverageDescriptionBase.xaml page must be

modified.

First, ensure you can build and deploy the Custom MetadataEditor.dll as described in Modifying the pages

provided with the ArcGIS metadata editor.

1. Open the CustomMetadataEditor solution in Visual Studio.

2. Using the Solution Explorer window, open the Pages folder. Double-click the

MD_CoverageDescriptionBase.xaml page.

ArcGIS Metadata Toolkit 10.5.x—May 2017 43

3. When the page opens, a warning may appear telling you that there are inconsistent line endings within

the file. Click Yes to use the Windows line ending format consistently in the file.

4. By default, when an XAML page opens, its display is split. You see both the Design pane and the XAML

pane associated with the page. Click the Swap Panes button to put the XAML pane on top, and click the

Collapse Pane button to hide the Design pane.

If you are exploring the CustomMetadataEditor project’s pages, the Design pane can help you determine

if you have found the XAML page you want to modify. However, all modifications to a page must be

performed by directly editing its XAML definition. Edits should not be made using the Design pane. The

custom controls built for the ArcGIS metadata editor are not created to work in the Design pane—

warnings may appear only in the Design pane that do not appear elsewhere, and which don’t affect how

the page operates once it has been compiled. When you know you have found the XAML page you want

to edit, close the Design pane. You can optionally set Visual Studio to always open XAML pages as XML

only; this way, you don’t have to hide the Design pane every time you open a page.

ArcGIS Metadata Toolkit 10.5.x—May 2017 44

5. Comment out the existing codelist that is included in the list of resources available on the

MD_CoverageDescriptionBase.xaml page.

<UserControl.Resources>

 …

 <!-- <e:Codelists x:Key="MD_CoverageContentTypeCode"

 CodelistName="MD_CoverageContentTypeCode"/> -->

</UserControl.Resources>

All drop-down lists in the ArcGIS metadata editor reference XML data resources that are compiled into

ESRI.ArcGIS.MetadataEditor.dll. The custom e:Codelists resource on this XAML page associates a Key

with the internal XML data and makes that information available to the controls on this page. When this

internal resource is used, the text that appears in the drop-down list will change depending on the

language of ArcGIS.

It is not possible to alter the internal XML data resources. You must comment out the internal resource

and add a new resource that defines the values that will populate the custom drop-down list.

6. Create a new XmlDataProvider as a resource on the page. An XmlDataProvider must have a unique Key

that identifies the resource. You may wish to copy the Key used by the commented-out e:Codelists

resource to the new XmlDataProvider resource (highlighted in yellow below).

<UserControl.Resources>

 …

 <!-- <e:Codelists x:Key="MD_CoverageContentTypeCode"

 CodelistName="MD_CoverageContentTypeCode"/> -->

 <XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

 <x:XData>

 </x:XData>

 </XmlDataProvider>

</UserControl.Resources>

The ComboBox control has an ItemsSource property that binds the control to a resource using its Key

(also highlighted in yellow below). If you use a custom Key for your XmlDataProvider, change the

properties of the ComboBox control so it will locate and use the correct resource to populate the drop-

down list’s values. The key you would change to match your XmlDataProvider’s Key is highlighted yellow

in the code below. This example assumes you will use the same key as the original resource.

<Grid Style="{DynamicResource EditorFrontPageStyle}">

 <StackPanel>

 …

 <ComboBox …

ArcGIS Metadata Toolkit 10.5.x—May 2017 45

 ItemsSource="{Binding Source={StaticResource

 MD_CoverageContentTypeCode}, Path=List}"

 …

 </ComboBox>

 </StackPanel>

</Grid>

7. In Windows Explorer, browse to the Toolkit’s Examples\custom metadata editor codelists folder. Open

the Codelists_ArcGIS.xml file, for example, by dragging and dropping it onto Visual Studio. This file isn’t

included in the Visual Studio project.

8. In the Codelists_ArcGIS.xml file, search for the text that is the Key for the original, commented-out

e:Codelists resource—in this case, MD_CoverageContentTypeCode. You will find a codelist group

element where the value of its ID attribute matches the Key text.

9. Copy the MD_CoverageContentTypeCode codelist group element and the elements it contains from the

Codelist_ArcGIS.xml file, and paste it into the new XmlDataProvider resource on the

MD_CoverageDescriptionBase.xaml page inside the XData element; an abbreviated version of this XML

data is shown below.

It is very important for the root node of any XML data specified in an XAML page to have an xmlns

attribute that sets the data’s XML namespace to an empty string; otherwise, the data inherits the

System.Windows namespace and any XPath queries that attempt to select values from the

XmlDataProvider will not work.

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

 <x:XData>

 <codelist id="MD_CoverageContentTypeCode" xmlns="">

 <code value="">Empty</code>

 <code value="001">Image</code>

 <code value="002">Thematic Classification</code>

 <code value="003">Physical Measurement</code>

 </codelist>

 </x:XData>

</XmlDataProvider>

10. Close the Codelists_ArcGIS.xml file.

11. Add an XPath attribute to the XmlDataProvider element and set its value to “codelist/code”, as

illustrated below.

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 XPath="codelist/code"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

 <x:XData>

 <codelist id="MD_CoverageContentTypeCode" xmlns="">

 <code value="">Empty</code>

 <code value="001">Image</code>

ArcGIS Metadata Toolkit 10.5.x—May 2017 46

 <code value="002">Thematic Classification</code>

 <code value="003">Physical Measurement</code>

 </codelist>

 </x:XData>

</XmlDataProvider>

This general XML data structure is used for all drop-down lists in the ArcGIS metadata editor. The text

you see in the drop-down list when using the editor is the content stored within the copied XML code

elements, for example, Empty or Physical Measurement. These are the values identified by the

XmlDataProvider’s XPath property.

12. Configure the ComboBox control to use the new XmlDataProvider resource by adjusting its ItemsSource

property. Remove the text “, Path=List” that follows the Source declaration (change is highlighted in

yellow below) in the Binding.

<Grid Style="{DynamicResource EditorFrontPageStyle}">

 <StackPanel>

 …

 <ComboBox …

 v:Nav.AnchorName="ContentTypCd,contentTyp/ContentTypCd"

 ToolTip="{x:Static

 r:Definitions.MD_CoverageDescription_contentType}"

 ItemsSource="{Binding Source={StaticResource

 MD_CoverageContentTypeCode}}"

 DisplayMemberPath="."

 SelectedValuePath="@value">

 <ComboBox.SelectedValue>

 <e:MetadataBinding XPath="contentTyp/ContentTypCd/@value"/>

 </ComboBox.SelectedValue>

 </ComboBox>

 </StackPanel>

</Grid>

The ComboBox control has a SelectedValuePath attribute; it selects the value attribute from the current

context in the XML data. The XmlDataProvider’s XPath attribute sets the current context to the code

element. With the SelectedValuePath property set to @value, when an option is chosen in a drop-down

list, the value that is actually selected is the value in the codelist/code/@value attribute. Therefore, if

you select Physical Measurement in the drop-down list, the content 002 is stored in the metadata.

13. Modify the XmlDataProvider’s codelist data to include your custom values. Be careful not to use any

codes that are already being used by the ArcGIS metadata editor, even if they are not included in your

base metadata style. Pick a unique set of code numbers that others are unlikely to use. The Empty

option is an important characteristic of the drop-down lists used by the ArcGIS metadata editor; do not

remove it from the list.

ArcGIS Metadata Toolkit 10.5.x—May 2017 47

In this example, a new value “101” with the text Predicted Surface is added to the drop-down list. This

code could be used to describe raster datasets generated by Geostatistical Analyst tools, for example.

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 XPath="codelist/code"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

 <x:XData>

 <codelist id="MD_CoverageContentTypeCode" xmlns="">

 <code value="">Empty</code>

 <code value="001">Image</code>

 <code value="002">Thematic Classification</code>

 <code value="003">Physical Measurement</code>

 <code value="101">Predicted Surface</code>

 </codelist>

 </x:XData>

</XmlDataProvider>

The Empty option clearly indicates that a value has not been selected in the list when you are looking at

a page in the metadata editor. However, it also provides flexibility when editing metadata. The content

stored in the metadata is the text in the value attribute; the Empty option has no text string to store in

the item’s metadata. When the ArcGIS metadata editor saves changes to an item’s metadata, if there is

no value to store, that element or attribute won’t be included in the item’s metadata. When the Empty

option is selected in a drop-down list, the element associated with the ComboBox control will not be

included in the item’s metadata. If the metadata previously included a value from this list, you can

remove it later by selecting the Empty option and saving that change.

14. Save the changes that have been made to the MD_CoverageDescriptionBase.xaml page.

15. Build the CustomMetadataEditor project. This creates a bin folder containing the new

CustomMetadataEditor.dll. Make sure there are no errors that prevent the project from building

successfully.

16. Copy the CustomMetadataEditor.dll to the <ArcGIS Installation Location>\bin folder.

17. Create a custom metadata style. In the <ArcGIS Installation Location>\Metadata\Config folder, make a

copy of the configuration file for the metadata style you would normally use. For example, copy the ISO

19139 Metadata Implementation Specification.cfg file, and give the copied file an appropriate name

such as ISO 19139 Metadata Implementation Specification Custom Codelist; this is how the metadata

style will appear in the Metadata Style drop-down list in the Options dialog box.

18. Edit the custom metadata style configuration file to replace Content page provided with ArcGIS for

Desktop with the custom version of the Content page included in the CustomMetadataEditor.dll. Search

for the text Pages.ContentInformation. You will find the following line in the file:

<page class="ESRI.ArcGIS.Metadata.Editor.Pages.ContentInformation">

Change the class attribute’s text from ESRI.ArcGIS.Metadata.Editor to CustomMetadataEditor. You do

not need to provide the assembly name that provides this custom page at the end of the class name.

ArcGIS Metadata Toolkit 10.5.x—May 2017 48

<page

class="CustomMetadataEditor.Pages.ContentInformation,CustomMetadataEditor">

With this change, all pages in the metadata editor are derived from the ESRI.ArcGIS.MetadataEditor.dll

that is provided with ArcGIS for Desktop, except the custom Content page.

19. Save the changes that have been made to the ISO 19139 Metadata Implementation Specification

Custom Codelist.cfg file and close the file.

20. Start an ArcGIS for Desktop application such as ArcCatalog.

21. Open the application’s Options dialog box, for example, by clicking Customize > ArcCatalog Options.

22. Click the Metadata tab.

23. Choose the custom metadata style in the drop-down list, for example, ISO 19139 Metadata

Implementation Specification Custom Codelist.

24. Click OK.

25. View an item’s metadata in the Description Tab.

If the ArcGIS for Desktop application was already running and the Description tab was active, click

another tab and click the Description tab again to reload the ArcGIS metadata editor based on the new

metadata style’s configuration.

26. Click Edit.

All pages typically associated with the base metadata style are present in the editor.

27. Click the Resource > Content page.

28. If the item’s metadata already includes a Coverage Description or an Image Description section, click

that section’s heading to expand it; otherwise, click to add a New Coverage Description or a New Image

Description section.

29. Click the Content Type drop-down list. Select the custom value in this list.

ArcGIS Metadata Toolkit 10.5.x—May 2017 49

30. Click Save.

31. Locate the content information section in the metadata display. For example, click in the metadata

display, and press Ctrl+F. The Find dialog box for the browser control appears. Start typing either

coverage description or image description; the display will immediately change so you can see the text

you have typed in to the Find dialog box. The custom code that was stored in the metadata is displayed

as is.

The metadata display shows the actual code stored in the metadata because the display hasn’t been

updated to display an appropriate phrase when the new code occurs in the metadata. You can

customize the metadata display to show the same phrase for the custom code that you see in the

metadata editor’s drop-down list.

32. Customize the appropriate metadata display stylesheet to recognize the custom code. In the <ArcGIS

Installation Location>\Metadata\Stylesheets\ArcGIS_Imports folder, make a copy of the codelists.xslt

file. Rename the copied file codelists_installed.xslt, for example; this preserves the original file installed

by ArcGIS for Desktop in case it is needed at a later time.

33. Open the codelist.xslt file in Visual Studio.

34. In the codelist.xslt file, locate the XSLT template that determines how the codes associated with the

MD_CoverageContentTypeCode are displayed.

<xsl:template name="MD_CoverageContentTypeCode">

 <xsl:param name="code" />

 <xsl:choose>

 <xsl:when test="$code = '001'"><res:idImg/></xsl:when>

 <xsl:when test="$code = '002'"><res:idThematicClass/></xsl:when>

 <xsl:when test="$code = '003'"><res:idPhysMeas/></xsl:when>

 <xsl:otherwise><xsl:value-of select="$code"/></xsl:otherwise>

 </xsl:choose>

</xsl:template>

ArcGIS Metadata Toolkit 10.5.x—May 2017 50

The code stored in the metadata is passed to the template using the code parameter. The xsl:choose

statement determines which phrase will be displayed for each code that it knows about. If another code

is stored in the metadata, the code itself is displayed. Another option must be added to display an

appropriate phrase when the custom code occurs in the metadata.

35. Add another xsl:when statement to the template that associates the custom code with the phrase that

appears in the metadata editor’s drop-down list.

<xsl:template name="MD_CoverageContentTypeCode">

 <xsl:param name="code" />

 <xsl:choose>

 <xsl:when test="$code = '001'"><res:idImg/></xsl:when>

 <xsl:when test="$code = '002'"><res:idThematicClass/></xsl:when>

 <xsl:when test="$code = '003'"><res:idPhysMeas/></xsl:when>

 <xsl:when test="$code = '101'">Predicted Surface</xsl:when>

 <xsl:otherwise><xsl:value-of select="$code"/></xsl:otherwise>

 </xsl:choose>

</xsl:template>

36. Save the changes that have been made to the codelist.xslt file.

37. In the ArcGIS for Desktop application you are using, click another tab and click the Description tab again.

The updated XSLT stylesheet will now be used to display the custom codelist value.

This above set of customizations can be shared with other people by providing them with the

CustomMetadataEditor.dll, the custom metadata style configuration file, and the custom codelist.xslt file, which

must be installed correctly within the <ArcGIS Installation Location> folder. This is an appropriate solution if the

codelist is fairly small, the drop-down list must only be modified once, and it is unlikely that the values will

change again.

If someone else has determined what the codelist customizations should be and the changes are more extensive

than those described in this example, you can configure the XmlDataProvider to reference an external XML file

that defines the codelist values without having to copy the entire codelist into the XAML page. This helps the

programmer focus on changes to the page without being inundated by XML data. The next set of steps will

illustrate how to make this change.

38. Stop any ArcGIS for Desktop applications that are running.

39. In Visual Studio, right-click the CustomMetadataEditor project, point to Add, then click New Folder. Give

the new folder an appropriate name, such as Codelists.

ArcGIS Metadata Toolkit 10.5.x—May 2017 51

40. In Windows Explorer, browse to the Toolkit’s Examples\custom metadata editor codelists folder. Copy

the Codelists_ArcGIS.xml file. Paste it into the CustomMetadataEditor project’s Codelists folder.

41. In Visual Studio, right-click the Codelists folder, point to Add, then click Existing Item. The Add Existing

Item dialog box appears.

42. Browse to the project’s Codelists folder. Change the filter to show all the XML files in the folder and

double-click the Codelists_ArcGIS.xml file.

43. On the MD_CoverageDescriptionBase.xaml page, locate the XmlDataProvider with the Key

MD_CoverageContentTypeCode that was created and modified in the steps above.

44. Add a Source attribute to the XmlDataProvider element. Its value should provide a relative path from

the MD_CoverageDescriptionBase.xaml page to the Codelists_ArcGIS.xml file, as illustrated below.

ArcGIS Metadata Toolkit 10.5.x—May 2017 52

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 Source="..\Codelists\Codelists_ArcGIS.xml"

 XPath="codelist/code"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

45. Modify the XmlDataProvider element’s XPath attribute value to locate and use the appropriate codelist

in the Codelists_ArcGIS.xml file. Since many codelists are defined in the file, the XPath must identify the

correct codelist using its ID attribute, as illustrated below.

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 Source="..\Codelists\Codelists_ArcGIS.xml"

 XPath=".//codelist[@id='MD_CoverageContentTypeCode']/code"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True">

46. Open the Codelists_ArcGIS.xml file in Visual Studio.

47. Copy the custom codelist value from the MD_CoverageDescriptionBase.xaml page to the

MD_CoverageContentTypeCode codelist in the Codelists_ArcGIS.xml file included in the Visual Studio

project. Below is an abbreviated version of the resulting codelist content.

<codelist id="MD_CoverageContentTypeCode">

 <code value="">Empty</code>

 <code value="001">Image</code>

 <code value="002">Thematic Classification</code>

 <code value="003">Physical Measurement</code>

 <code value="101">Predicted Surface</code>

</codelist>

48. Save the changes that have been made to the Codelists_ArcGIS.xml file and close the file.

49. In the MD_CoverageDescriptionBase.xaml page, delete the x:XData element and all of its content from

the XmlDataProvider. You can optionally leave the closing XmlDataProvider tag in place, or remove it

and close the opening XmlDataProvider tag as illustrated below (highlighted in yellow).

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 Source="..\Codelists\Codelists_ArcGIS.xml"

 XPath=".//codelist[@id='MD_CoverageContentTypeCode']/code"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True"/>

50. Save the changes that have been made to the MD_CoverageDescriptionBase.xaml page.

51. Build the CustomMetadataEditor project. Make sure there are no errors that prevent the project from

building successfully.

52. Copy the CustomMetadataEditor.dll to the <ArcGIS Installation Location>\bin folder.

53. Start an ArcGIS for Desktop application such as ArcCatalog.

54. View an item’s metadata in the Description Tab.

55. Click Edit.

ArcGIS Metadata Toolkit 10.5.x—May 2017 53

56. Click the Resource > Content page.

57. If the item’s metadata already includes a Coverage Description or an Image Description section, click

that section’s heading to expand it; otherwise, click to add a New Coverage Description or a New Image

Description section.

58. Click the Content Type drop-down list. The same values are available in the drop-down list now as when

the custom codelist was directly included in the XAML page.

59. Click Exit.

With this method of referencing an XML file, the contents of the Codelists_ArcGIS.xml file are compiled into the

CustomMetadataEditor.dll. Sharing your changes with others continues to require distributing the

CustomMetadataEditor.dll, the custom metadata style configuration file, and the custom codelist.xslt file. If you

must change the values included in the drop-down list at a later time, the CustomMetadataEditor.dll must be

recompiled to include the changes, then the new DLL and an updated codelist.xslt file must be provided to the

people with whom you shared your customizations.

If more flexibility is needed, you can set the XmlDataProvider to reference an external XML file. Instead of

providing a relative path to a file included in the Visual Studio project, provide an absolute location that can be

used to locate the codelist definition file from anywhere in your organization at any time. For example, the

following path could be used to access the XML file in a shared folder on the network.

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 Source="\\networkServer\metadataEditor\Codelists_ArcGIS.xml"

 XPath=".//codelist[@id='MD_CoverageContentTypeCode']/code"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True"/>

Or, a URL can be used to access the XML file from a Web server.

<XmlDataProvider x:Key="MD_CoverageContentTypeCode"

 Source="http://server/metadataEditor/Codelists_ArcGIS.xml"

 XPath=".//codelist[@id='MD_CoverageContentTypeCode']/code"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True"/>

Because the XML file is external to the CustomMetadataEditor.dll, each time someone uses the customized

drop-down list in the metadata editor, the XML file must be queried for the appropriate values. Changes that are

made to the codelist XML file are immediately available to the ArcGIS metadata editor. You don’t have to rebuild

and redistribute the CustomMetadataEditor.dll each time a codelist value changes. However, be aware that

network or server problems could cause the XML file to be unavailable; if this happens, the drop-down list will

appear empty in the metadata editor.

If you pursue this method of customizing a codelist’s values, consider changing the metadata style to refer to a

set of metadata display stylesheets that are also available from the same central location. This way, if changes

are made to the central codelist definition XML file, you can immediately update the central codelist.xslt file to

recognize the new codelist values. No new DLLs or resource files must be distributed to the people with whom

ArcGIS Metadata Toolkit 10.5.x—May 2017 54

you have shared your customizations. However, as with the metadata editor, if network or server problems

arise, the metadata display will either appear blank in ArcGIS for Desktop, or you will see an error message.

Some caution is required when referencing external XML files that define codelist values. Any namespaces used

in the external XML file must also be referenced in the XAML page before the XML data can be queried

successfully. Also, any XML Schema files referenced within the XML file must be accessed and used successfully

by Microsoft .NET Framework before the ArcGIS metadata editor can query the XML data it defines. Even though

a file and the XML Schemas it references operate successfully in another XML software package, there is no

guarantee they will also operate successfully in .NET Framework. Each XML parser has different tolerances for

warnings and errors that may be encountered.

For example, attempts to use some online XML files associated with the ANZLIC profile of ISO 19115 that define

custom codelists will be unsuccessful. These files explicitly reference a collection of online XML Schemas that

define the format of the codelist file itself. When the CustomMetadataEditor project is compiled, these XML

Schemas are accessed to validate the custom codelist file. .NET Framework detects various problems with those

XML Schemas reported in the build’s list of warnings. As a result, the custom codelist XML file’s contents can’t

be queried, and the drop-down list can’t be populated with any values. When these codelist definition files are

saved locally and the XML Schema references are removed, the files can be used successfully.

If an external XML file incorporates namespaces, an XmlNamespaceMappingCollection must be added to the

XAML page’s resources to declare the external XML file’s namespaces. Also, the collection’s Key must be

referenced by the XmlDataProvider. Once this has been accomplished, the XmlDataProvider’s XPath attribute

can include namespaces that are used in the external XML file.

<XmlNamespaceMappingCollection x:Key="nsMapping">

 <XmlNamespaceMapping Uri="http://www.isotc211.org/2005/gmx" Prefix="gmx">

 <XmlNamespaceMapping Uri="http://www.opengis.net/gml" Prefix="gml">

</XmlNamespaceMappingCollection>

<XmlDataProvider x:Key="MD_ScopeCode"

 Source="http://server/metadataEditor/GAScopeCodeList.xml"

 XmlNamespaceManager="{StaticResource nsMapping}"

 XPath=".//gmx:CodeListDictionary[@gml:id =

'MD_ScopeCode']/gmx:codeEntry//gml:identifier"

 IsAsynchronous= "False"

 IsInitialLoadEnabled= "True"/>

ISO 19139-format codelist definition files would not typically include a value that corresponds to the Empty

option provided in the ArcGIS metadata editor’s drop-down lists. If a control references a file like this as its

source, once a value has been selected from the list, you can only change that value to another value in the

list—you may never be able to remove the element or its value from an item’s metadata.

These types of codelists generally provide codes such as thematicClassification, instead of a numeric-based code

such as 002, and do not provide a separate phrase that would be more suitable for display. The ComboBox

control should be set to store the same value in the item’s metadata as it displays in the drop-down list. Set the

http://asdd.ga.gov.au/asdd/work/ISOmetadata/

ArcGIS Metadata Toolkit 10.5.x—May 2017 55

SelectedValuePath parameter to reference the same values as the XmlDataProvider’s list by providing the value

“.” (highlighted in yellow below).

<ComboBox …

 ItemsSource="{Binding Source={StaticResource MD_ScopeCode}}"

 DisplayMemberPath="."

 SelectedValuePath=".">

Overall, the easiest approach may be to produce a version of the codelist definition XML file that follows the

internal codelist format used by ArcGIS that includes the Empty codelist value.

Note: These customizations have not addressed customizing the exporter used to transform the item’s

ArcGIS metadata into a standard metadata XML format to recognize and handle the custom codelist

values appropriately. If the exporter is not customized to recognize the new values and the item’s

metadata is exported to a standard format, any elements that contain custom values will not be

included in the standard-format XML document that is produced.

Customizing the validation rules for a page
With ArcGIS for Desktop 10.1 and later, validation within the ArcGIS metadata editor is accomplished outside

the traditional WPF validation framework. This new framework was put in place to support the various and

complex methods with which metadata content is evaluated for different metadata standards.

When you start editing an item’s metadata, the validation rules for the pages in the ArcGIS metadata editor are

tested. Every metadata style defines its own set of validation rules that are evaluated for each page included in

the ArcGIS Metadata Toolkit. Each XAML page must know about any rules associated with the content it

manages so the page can react appropriately when problems are found. When the XPath associated with a

control on the XAML page matches an XPath calculated from the validation tests in a metadata style, the ArcGIS

metadata editor’s framework reacts accordingly. If the validation rule fails, the editor can

 Locate the appropriate controls on the page.

 Provide an appropriate red background for the controls to indicate a problem.

 Display the correct error message at the top of the page.

 Show a red X on the page’s icon in the metadata editor’s table of contents.

If all of a page’s validation rules pass, the metadata editor will show a green check mark on the page’s icon in the

editor’s table of contents.

Overview of the validation framework
Take a look at any metadata style in an XML editor such as Visual Studio. The validation rules for the Overview >

Item Description page always begin as illustrated below. All of the rules for a page are defined in a validation

element within the page element.

 <page class="ESRI.ArcGIS.Metadata.Editor.Pages.ItemInfo">
 <validation>

ArcGIS Metadata Toolkit 10.5.x—May 2017 56

 <!-- title -->
 <exists xpath="/metadata/dataIdInfo/idCitation/resTitle[. != '']" ref="resTitle"/>
 …

 </validation>
 </page>

Each validation rule defined targets a specific XPath or set of XPaths that may exist in an ArcGIS metadata

format XML document. There are different types of validation rules.

The basic validation rule is one that tests if a mandatory element has content. In the example shown below, this

type of validation rule is defined using an exists element. The test itself is defined in the xpath attribute,

highlighted in blue below; it provides a query that is performed against the item’s ArcGIS metadata XML

document and returns True or False. This example checks if a descriptive title has been provided for the item. A

validation rule also has a label defined in the ref attribute, highlighted in yellow below.

 <exists xpath="/metadata/dataIdInfo/idCitation/resTitle[. != '']" ref="resTitle"/>

An item’s descriptive title is stored at the XPath: /metadata/dataIdInfo/idCitation/resTitle. The test at the end of

the XPath, [. != ''], checks if the resTitle element has content. If the resTitle element has content, it is not empty,

and the test returns True—the validation rule passes. If the element identified by the test’s XPath doesn’t exist,

or if it exists but is empty, the test returns False; the validation rule fails and the XPath and its label are passed

through the ArcGIS metadata editor’s validation framework.

Validation rules are always defined in the top-level XAML pages referenced by the metadata style configuration

file, not in subpages that define controls referenced by the top-level XAML page. The Item Description page in

the ArcGIS metadata editor is defined by the ItemInfo.xaml page; you can find it in the CustomMetadataEditor

project’s Pages folder when you open the project in Visual studio. The XAML page determines which controls

appear on the page and defines which error messages may appear at the top if any validation rules fail. A

portion of the ItemInfo.xaml page is illustrated below.

 <UserControl.Resources>
 …
 <!-- validation issues -->
 <v:MetadataIssueInfo x:Key="resTitle" Message="{x:Static r:Issues.resTitle_REQ}" />
 …
 </UserControl.Resources>

 <Grid Style="{DynamicResource EditorFrontPageStyle}">
 <StackPanel>
 <Label … Content="{x:Static r:Resources.SEC_ITEMINFO}"/>
 <ListBox … ItemsSource="{Binding XPath=/metadata/dataIdInfo/idCitation}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <DockPanel …>
 <Label … Content="{x:Static r:Resources.LBL_ITEMINFO_TITLE}"/>
 <TextBox … ToolTip="{x:Static r:Definitions.CI_Citation_title}"
 v:Nav.AnchorName="resTitle,resTitle"
 Text="{e:MetadataElementSync XPath=resTitle}"/>
 </DockPanel>
 </DataTemplate>

ArcGIS Metadata Toolkit 10.5.x—May 2017 57

 </ListBox.ItemTemplate>
 </ListBox>
 …
 <!-- validate after all anchors are loaded -->
 <v:PageValidateControl/>
 </StackPanel>
 </Grid>

At the top of the XAML page in its Resources section, several v.MetadataIssueInfo resources are defined. The

first one for the ItemInfo.xaml page is associated with the resTitle validation rule and is illustrated above. The

v.MetadataIssueInfo resource’s Key value must match the label provided in the metadata style configuration file

for its associated validation rule; it is highlighted in yellow in the above example. The v.MetadataIssueInfo

resource’s Message attribute specifies the text that will appear at the top of the page as the error message if the

validation rule fails. For pages provided with ArcGIS for Desktop, the error messages are derived from the ArcGIS

metadata editor’s internal string resources, which are translated into many different languages.

The item’s descriptive title is associated with a TextBox control defined in the ItemInfo.xaml page. As discussed

in the previous sample that customized a codelist for a page provided with ArcGIS for Desktop, the XPath

associated with the TextBox control is partly determined by the XPath to which its parent ListBox is bound:

/metadata/dataIdInfo/idCitation; this XPath sets the current XML context for the controls within the ListBox. The

TextBox control’s Text attribute appends resTitle to the current XML context, as specified by the ListBox. Any

text provided with this control is stored in the /metadata/dataidInfo/idCitation/resTitle XPath in the item’s

metadata XML document. The XPath bindings for the ListBox and TextBox controls are highlighted in blue in the

above example.

The XAML page also has an anchor on the page associated with the validation rule, defined by the TextBox

control’s v:Nav.AnchorName attribute. In this example, the title’s TextBox control’s v:Nav.AnchorName attribute

has the value “resTitle,resTitle”; this is a <label,XPath> pair. Below, the label portion of the value is highlighted in

yellow, and the XPath portion of the pair is highlighted in blue.

 <TextBox … ToolTip="{x:Static r:Definitions.CI_Citation_title}"
 v:Nav.AnchorName="resTitle,resTitle"
 Text="{e:MetadataElementSync XPath=resTitle}"/>

The label portion of the anchor’s <label,XPath> pair matches the value of the ref attribute in the metadata style

configuration file and also the Key for the v.MetadataIssueInfo resource in the XAML page. The anchor ties the

error message at the top of the page with this specific control.

The XPath portion of the anchor’s <label,XPath> pair matches the portion of the XPath specified in the TextBox

control’s binding. This XPath is also appended to the current XML context, as specified by the ListBox. The

anchor’s XPath matches the XPath to which the TextBox control is bound and the validation rule’s XPath:

/metadata/dataidInfo/idCitation/resTitle. The anchor’s presence on the TextBox control ensures the control’s

background will turn red when the associated validation rule fails. The control’s display style is aware of the

validation framework and will change the appearance of the control appropriately when a validation rule fails.

When the Overview > Item Description page is loaded, the metadata editor evaluates the validation rule tests

defined in the metadata style. If a title is stored in the item’s metadata, a validation rule that checks if a title

ArcGIS Metadata Toolkit 10.5.x—May 2017 58

exists will pass and no further action is taken. If all validation rules pass for this page, it will have a green check

mark on its icon in the editor’s table of contents.

However, if a title isn’t stored in the item’s metadata, the title validation rule’s XPath and reference label are

passed to the XAML page. An error message is found on the XAML page with a Key that matches the validation

rule’s label; the text associated with the error message is displayed at the top of the page. The XAML page takes

the XPath associated with the rule and compares it to the XPaths of the anchors on the page. When an

appropriate anchor is found, the control on which the anchor is located will change its display appropriately—for

a TextBox, its background will turn red to indicate content must be provided in that control.

When you type a descriptive title into a red, empty title TextBox control, that content is stored in the

/metadata/dataIdInfo/idCitation/resTitle XPath in the metadata XML document. When the TextBox control loses

focus, validation occurs on the page. The title validation rule is evaluated again and the test passes because the

appropriate element in the item’s metadata exists and has content. The error message is removed from the list

at the top of the page, and the TextBox’s background is no longer red. If there are no other validation errors on

the page, its icon will have a green check mark in the table of contents.

It is important that the XPaths specified for the validation rule, the input control’s content, and the anchor all

match. If the control’s XPath doesn’t match, when content is provided, the error message won’t be cleared. If

the validation rule’s XPath doesn’t match the control, the validation rule could fail, but the page won’t indicate

that a problem has occurred or it may not detect the content that already exists.

The error list at the top of the page is designed to support browsing. That is, if you click an error in the list at the

top, the page should scroll down to the position where the anchor associated with that error message occurs on

the page and the control where you can correct that error. This can be accomplished because the anchor’s label

matches the validation rule’s label and the error message’s Key.

Note: Browsing from the error message to the appropriate control on the page works in many cases,

but, unfortunately, it is not always successful in the current version of ArcGIS for Desktop. The control

that allows you to provide the required but missing content may occur within a group of elements that

haven’t yet been added to the page. Or, the controls may occur within an expander that is closed and

will not automatically open. Also, for some controls that appear in the metadata editor, the display

styles are unaware of the validation framework and will not change their state to indicate a problem.

Future releases of ArcGIS should resolve these problems.

Setting conditions for validation rules
Conditions can be added that determine if a validation rule will be evaluated. A condition is defined by providing

a for element and providing a test in its xpath attribute. The query in the xpath attribute is performed against

the item’s ArcGIS metadata XML document. This query should return a set of XML nodes instead of a True or

False result. If nodes are returned by the condition, any validation rules defined within the for element will be

evaluated. For example, two additional rules on the Item Description page are illustrated below.

 <!-- abstract -->
 <for xpath="/metadata[not(tool)]">
 <exists xpath="dataIdInfo/idAbs[. != '']" ref="idAbs"/>

ArcGIS Metadata Toolkit 10.5.x—May 2017 59

 </for>

 <!-- tool summary -->
 <for xpath="/metadata[tool]">
 <exists xpath="tool/summary[. != '']" ref="toolSummary"/>
 </for>

A geoprocessing tool’s metadata will always include a tool element that contains information specific to tools

such as their parameters. The first validation rule’s condition only returns True when the item is not a tool; that

is, the item’s metadata does not contain the tool element. The second validation rule only returns True when

the item is not a tool. These xpath queries return all the descendants of the root node and check if one of those

elements is or none of them are the tool element.

If the first condition is successful, its validation rule is evaluated to check if an abstract has been provided. If the

second condition is successful, its validation rule is evaluated to check if a tool summary has been provided. In

both cases, the exists element’s xpath attribute provides a relative XPath to test. The validation rules are

evaluated by querying the XML nodes returned by the condition test. The first validation rule succeeds only if

content is saved in the /metadata/dataIdInfo/idAbs element. The second validation rule succeeds only if content

is saved in the /metadata/tool/summary element.

Many validation rules can be associated with the same condition by providing many exists elements within the

appropriate for element. The example below is from the Resource > Extents page. This rule is designed to ensure

that both a minimum and a maximum value are provided.

 <!-- vertical max and min -->
 <for xpath="//dataExt//vertEle[*]">
 <exists xpath="vertMinVal[. != '']" ref="vertMinVal"/>
 <exists xpath="vertMaxVal[. != '']" ref="vertMaxVal"/>
 </for>

The condition specified by the for element ensures the validation rules will only be evaluated if the vertical

extent element has a child element; that is, if either a maximum or minimum value has already been provided. If

the condition has been satisfied, the validation rules are evaluated. The first rule checks if a minimum value has

been provided, and the second rule checks if a maximum value has been provided. If one of these values is

missing, the appropriate error message will appear indicating that the missing value must be provided, and the

appropriate control will turn red.

Adjusting the XPath to which a validation rule applies
In some cases, a value in one element is only required depending on the existence of or the content in another

element. The validation rule below is defined for the Resource > Details page. In this example, if the scale of an

item is described by providing a distance, then a unit of measurement is required.

 <!-- scale -->
 <for xpath="//dataIdInfo//scaleDist[value != '']">
 <exists xpath="value[@uom != '']" ref="uom,@uom"/>
 </for>

ArcGIS Metadata Toolkit 10.5.x—May 2017 60

The condition selects any scale distance elements describing the item if content is stored in its value element.

For the selected scale distance, the validation rule is evaluated to see if the value element has content in a uom

attribute. If the /metadata/dataIdInfo/dataScale/scaleDist/value element has content, but it doesn’t have a uom

attribute, or a uom attribute is present but empty, the validation rule fails.

Because of the manner in which the validation rule is defined, the XML context of this test is the value element.

However, it is the uom attribute whose content must be fixed. To resolve this, the existing element’s ref

attribute defines a <label,XPath> pair. The label portion of the pair is passed to the XAML page as-is. The XPath

portion of the pair is used to modify the XPath associated with this test, and the correct XPath is passed to the

XAML page. In this example, @uom is added to the current XML context, and the

/metadata/dataIdInfo/dataScale/scaleDist/value/@uom XPath is passed to the XAML page.

In the ResourceDetails.xaml page, the metadata validation rule’s error message is defined because this is the

top-level XAML page referenced by the metadata style. The error message is displayed on the page because its

Key matches the validation rule’s label. There are also several containers and various controls that provide

access to many metadata elements.

 <UserControl.Resources>
 <v:MetadataIssueInfo x:Key="uom" Message="{x:Static r:Issues.UOM_REQ}" />
 </UserControl.Resources>

 <Grid … >
 <StackPanel>
 <ListBox … ItemsSource="{Binding XPath=/metadata/dataIdInfo[1]}">
 …
 <!-- resolution -->
 <ListBox … ItemsSource="{Binding XPath=dataScale}">
 …
 <!-- resolution -->
 <pages:MD_Resolution/>

For the portion of the page where the item’s resolution is specified, the current XML context is set to

/metadata/dataIdInfo[1]/dataScale. This is determined by the manner in which the controls are bound to the

XML document, as highlighted in yellow above. The [1] in the XPath indicates that only the first dataIdInfo

element will be edited by controls on the page; the ArcGIS metadata editor is designed to only describe one

item at a time—the current ArcGIS item. The input controls that allow you to provide resolution information are

defined in the MD_Resolution XAML page; this reference is highlighted in yellow above.

A portion of the MD_Resolution.xaml page is illustrated below. It provides a ListBox control that further sets the

XML context. That ListBox contains the TextBox control for providing a distance in the value element, and also

another ListBox control that sets the XML context to the value element. Then the XAML page references the

UCUM_Length.xaml page, which provides the actual drop-down list. These points are highlighted in yellow

below.

 <!-- distance resolution -->
 <ListBox … ItemsSource="{Binding XPath=scaleDist}">
 …
 <!-- distance resolutinon -->

ArcGIS Metadata Toolkit 10.5.x—May 2017 61

 <TextBox … Text="{e:MetadataBinding XPath=value}" />

 <!-- units -->
 <ListBox … ItemsSource="{Binding XPath=value}">
 …
 <!-- uom chooser -->
 <p:UCUM_Length … />

The units of measure drop-down list is defined on the UCUM_Length.xaml page, a portion of which is illustrated

below. It provides a ComboBox control that allows people to select a value from a list. This control is bound to

the /metadata/dataIdInfo[1]/dataScale/scaleDist/value/@uom attribute. The anchor for the validation rule’s

error message is also defined in this XAML page on the ComboBox. The anchor must provide the same @uom

XPath in its <label,XPath> pair as the ComboBox uses in its SelectedValue property to set the XPath correctly.

 <!-- uom chooser -->
 <ComboBox … v:Nav.AnchorName="uom,@uom" … >
 <ComboBox.SelectedValue>
 <e:MetadataBinding XPath="@uom"/>
 </ComboBox.SelectedValue>
 </ComboBox>

When a unit of measure is missing, the error message “value units is required” appears at the top of the

Resource > Details page. The unit of measure drop-down list has a red background because a value hasn’t been

selected. If you click the error message, the page scrolls down until the units of measure drop-down list is visible

at the bottom of the page. The page has a red X on its icon in the table of contents. Because the validation

components are coordinated with the input control, when a value is selected from the drop-down list, the

validation rule passes, the error message disappears, and the control’s display style returns to normal.

Rules that depend on other elements, and showing messages without turning a

control red
Metadata standards include rules where there is a set of metadata elements and a value must be provided in

one of them. One example from the ISO 19115 metadata standard concerns the geographic location of a

dataset. If a metadata document’s hierarchy level indicates the metadata describes a dataset, content must be

provided describing the dataset’s extent, either as a bounding box or as a well-known place identifier. In the

ArcGIS metadata editor, this rule is defined for the Resource > Extents page in the ISO 19139 metadata style,

and is illustrated below.

 <!-- either a bounding box or a geographic description (identifier) must be provided if the item's hierarchy
level is "dataset" -->
 <for xpath="/metadata[mdHrLv/ScopeCd/@value = '005']">
 <or ref="dataExtReq">
 <exists xpath="//dataExt//GeoBndBox[*]"/>
 <exists xpath="//dataExt//GeoDesc/geoId/identCode[. != '']"/>
 </or>
 </for>

This condition tests if the metadata describes a dataset by checking if the scope code stored in the metadata

hierarchy level element is the dataset code. The overall validation rule is defined by an or element, which in turn

contains many individual validation rules. The or element indicates that if any of the enclosed validation rules

ArcGIS Metadata Toolkit 10.5.x—May 2017 62

succeed, the overall validation rule passes. If all the enclosed validation rules fail, the overall validation rule fails.

The label for the overall validation rule is provided on the or element.

The error message associated with this validation rule is defined on the ResourceExtent.xaml page where its Key

matches the validation rule’s label, as illustrated below. If the overall validation rule fails, an error message

appears at the top of the Resource > Extents page: either a bounding box or a geographic description (identifier)

must be provided if the item’s hierarchy level is dataset.

 <v:MetadataIssueInfo x:Key="dataExtReq" Message="{x:Static r:Issues.extent_dataExt_REQ}" />

However, an anchor matching the rule’s XPath has not been provided anywhere on the XAML page or its

subpages. This is because there are no controls on the page at the time that would allow you to provide the

required content. The green plus buttons are not tied into the validation framework at this time such that they

would turn red to indicate you must click one of them to add the required information.

When you click either the Add Bounding Box or the Add Geographic Description buttons, the XML fragments

associated with those controls are added to the XML document, and the validation rules are evaluated again.

The XPaths provided for the individual validation rules are constructed carefully to ensure that clicking Add

Bounding Box or Add Geographic Description alone will cause the validation rule to pass. At that point, other

conditions will succeed and cause their validation rules to fail; those messages will take over and ensure the

content required for either a bounding box or a geographic description will be provided. If all bounding box or

geographic description content is later deleted, the overall validation rule illustrated above will appear again.

The other aspect of this example is what happens if the value in the metadata hierarchy level element changes.

The metadata hierarchy level’s content is managed by the Metadata > Details page. If you choose a different

value in the metadata hierarchy level drop-down list, the metadata style’s validation rules are reevaluated when

the drop-down list loses focus. If the Resource > Extents page has a red X on its icon because neither a bounding

box nor a geographic description has been provided, and you change the metadata hierarchy level element’s

value on the Metadata > Details page to any value other than dataset, the Resource > Extents page icon will

change to a green check mark. If the metadata hierarchy level element’s value is not “005”, the condition fails,

and the overall validation rule is not evaluated.

Sometimes, a validation rule is dependent upon another metadata element’s value, and when you change the

related element’s value, the metadata editor does not automatically evaluate the metadata style’s validation

rules. If this occurs, you can force the editor to reevaluate the validation rules when its content changes by

providing the v.Nav.Check attribute, which is highlighted in yellow in the example below.

 <TextBox …
 Text="{e:MetadataBinding XPath=exDesc}"
 ToolTip="{x:Static r:Definitions.EX_Extent_description}"
 v:Nav.Check="True"/>

This example illustrates a case where the v.Nav.Check attribute was needed on the Resource > Extents page for

the FGDC CSDGM Metadata style. A validation rule requires a description to be provided along with a temporal

extent to identify the specific property of the item associated with the time, such as when the data was

captured or when the item was published. Validation rules were not being evaluated automatically after content

ArcGIS Metadata Toolkit 10.5.x—May 2017 63

was provided in the Description text box. With the v:Nav.Check attribute set to True on that control, it forces the

validation rules to be evaluated when the content in that control changes.

Validation rules that cause many controls to turn red
When an item’s metadata includes contact information, metadata standards require you to provide some

information identifying the contact. ISO 19115 requires you to provide the name of the individual, organization,

or position associated with the contact information. The example below comes from the ISO 19139 metadata

style’s rules for the Metadata > Contacts page; the first validation rule in the condition evaluates this

requirement for the contact associated with the item’s metadata.

 <!-- contact name, org or role -->
 <for xpath="//mdContact">
 <exists xpath="(rpIndName | rpOrgName | rpPosName)[. != '']/.." ref="party IndName,rpIndName
OrgName,rpOrgName PosName,rpPosName"/>
 <exists xpath="role[RoleCd/@value != '']" ref="role"/>
 </for>

This condition selects the /metadata/mdContact element; it will only exist in an item’s metadata if the New

Contact button on the Metadata > Contacts page has been clicked or if a saved contact has been loaded onto

the page. Once the mdContact element exists, the condition succeeds and the validation rules inside the

element are evaluated. The first validation rule’s xpath checks to see if the name of the individual, organization,

or position of the contact has been stored.

The desired effect is for one error message to display at the top of the page indicating that one of the three

pieces of information must be provided. However, all three controls that allow you to enter an individual,

organization or position name should turn red. This is accomplished by providing additional information in the

validation rule’s ref attribute. The ref attribute’s value has four parts.

 Because of the manner in which the validation rule’s xpath is written, the XML context of the validation

rule remains at /metadata/mdContact when the validation rule fails. The label “party” is associated with

this XPath and sent to the XAML page as a <label,XPath> pair.

 “IndName,rpIndName” is sent to the XAML page as a <label,XPath> pair; the associated XPath is

/metadata/mdContact/rpIndName.

 “OrgName,rpOrgName” is sent to the XAML page as a <label,XPath> pair; the associated XPath is

/metadata/mdContact/rpOrgName.

 “PosName,rpPosName” is sent to the XAML page as a <label,XPath> pair; the associated XPath is

/metadata/mdContact/rpPosName.

The MetadataContacts.xaml page defines an error message that is associated with the first <label,XPath> pair. It

displays the error message “name, organization, or position is required for the responsible party” on the page.

 <v:MetadataIssueInfo x:Key="party" Message="{x:Static r:Issues.party_REQ}" />

The MetadataContacts.xaml page also references the controls defined in the CI_ResponsibleParty.xaml page, a

portion of which is illustrated below.

ArcGIS Metadata Toolkit 10.5.x—May 2017 64

 <!-- individual name -->
 …
 <TextBox … ToolTip="{x:Static r:Definitions.CI_ResponsibleParty_individualName}"
 v:Nav.AnchorName="IndName,rpIndName"
 Text="{e:MetadataBinding XPath=rpIndName}" />

 <!-- organization -->
 …
 <TextBox … ToolTip="{x:Static r:Definitions.CI_ResponsibleParty_organisationName}"
 v:Nav.AnchorName="OrgName,rpOrgName"
 Text="{e:MetadataBinding XPath=rpOrgName}" />

 <!-- position -->
 …
 <TextBox … ToolTip="{x:Static r:Definitions.CI_ResponsibleParty_positionName}"
 v:Nav.AnchorName="PosName,rpPosName"
 Text="{e:MetadataBinding XPath=rpPosName}" />

The three remaining <label,XPath> pairs are used to associate the validation rule with these three TextBox

controls that allow you to provide an individual, organization, or position name for the contact. The validation

rule is associated with the anchor on each of the three controls; they display with a red background when the

validation rule fails. No error messages are defined on the Metadatacontacts.xaml page in association with the

anchors on the individual TextBox controls.

When content is provided in any one of these three controls, the validation rules are evaluated again and this

time both the condition and the validation rule will succeed. The error message is removed from the top of the

page, and all three controls return to their normal display.

Checking the data type of an element’s content
Validation rules up to this point have been concerned with the existence of an element and its content; they

have not been concerned with the manner of content stored in an element. However, some metadata elements

are expected to have content that conforms to a specific data type.

Validation rules that address an element’s data type are specified directly on the controls in an XAML page, not

in a metadata style’s configuration file. They are handled differently because they affect the ArcGIS metadata

format as a whole instead of a specific metadata style. All metadata styles share the same underlying XML

document. The same metadata element can’t store an Integer for one metadata style and a Real number for

another metadata style.

Do not change the data type of metadata elements that are accessed by ArcGIS software beyond the ArcGIS

metadata editor. For example, if you changed the validation rules to allow text in the metadata element that is

expected to store a number representing the scale denominator, ArcGIS for Desktop Search would be unable to

use the information in that element to perform a spatial search appropriate for the map’s current scale.

A good example of a rule that influence’s an element’s data type can be found on the Resource > Extents page.

Real numbers are required to be provided when describing an item’s vertical extent. The validation rules defined

on the Resource Extent.xaml page are concerned with the existence of the vertical extent’s minimum and

maximum values and are associated with the validation rules defined in the metadata style configuration files.

ArcGIS Metadata Toolkit 10.5.x—May 2017 65

The Resources section of the EX_VerticalExtent.xaml page defines two validation rules associated with the data

type of an element’s content. MetadataRealRules is a class that can be used to check if the value stored at a

specific XPath is a real number.

 <v:MetadataRealRules x:Key="vertMinVal" Msg="{x:Static r:Issues.vertMinVal_REAL}" />
 <v:MetadataRealRules x:Key="vertMaxVal" Msg="{x:Static r:Issues.vertMaxVal_REAL}" />

Like the error messages defined on the top-level XAML pages, the Key attribute provided must be unique, and

its value also serves as the validation rule’s label. Similarly, the Msg attribute specifies the text that will be

displayed at the top of the page as an error message. Unlike the validation rules specified in a metadata style,

these validation rules are only available to the controls defined on the same XAML page.

The TextBox controls defined on the EX_VerticalExtent.xaml page are used to provide the vertical extent’s

minimum and maximum values, as illustrated below.

 <!-- minimum value -->
 …
 <TextBox … v:Nav.AnchorName="vertMinVal,vertMinVal"
 v:MetadataRules.Rules="{StaticResource vertMinVal}"
 Text="{editor:MetadataBinding XPath=vertMinVal}" />

 <!-- maximum value -->
 …
 <TextBox … v:Nav.AnchorName="vertMaxVal,vertMaxVal"
 v:MetadataRules.Rules="{StaticResource vertMaxVal}"
 Text="{editor:MetadataBinding XPath=vertMaxVal}" />

These controls have a v:MetadataRules.Rules attribute used to associate the control with the data type

validation rule resource defined at the top of the XAML page. The validation rule whose Key value matches the

value of the MetadataRules.Rules attribute will be used to test the control’s content and display the appropriate

message if the content has the wrong data type. The labels associated with the data type validation rules are

highlighted in gray in the example above.

These controls are also associated with existence validation rules that are defined in the metadata style. They

have a v:Nav.AnchorName attribute whose <label,XPath> pair associates the control with those rules and their

error messages. The XPath of the anchor must match the XPath of the control’s content in the same manner as

for other anchors. The labels are highlighted in yellow and the XPaths are highlighted in blue in the example

above. Because the data type validation rules and existence validation rules use the same label, both sets of

rules will use the same anchor on the input control.

Sometimes you need to set upper and lower bounds on the numeric value that can be stored in an element. An

example of this can be found on the MD_ImageDescription.xaml page, where controls for providing content

describing the percentage cloud cover obscuring an image is defined as illustrated below.

 <v:MetadataRealRules x:Key="cloudCovPer" Msg="{x:Static r:Issues.CLOUDCOVER_PER}" Min="0"
Max="100"/>

ArcGIS Metadata Toolkit 10.5.x—May 2017 66

When the validation rule for real numbers is defined in the page resources, a minimum and maximum value for

the control’s content is also specified. You can provide only a minimum or only a maximum value if it is

appropriate to do so.

In other cases, a metadata element’s value must be an integer rather than a real number. An example of this can

be found on the MD_VectorSpatialRepresentation.xaml page, where a count of the number of features in a

dataset can be provided. Minimum and maximum values can also be provided for integer elements in the same

manner, if it is appropriate to do so.

 <v:MetadataIntegerRules x:Key="GeoObjCntRule" Msg="{x:Static r:Issues.geoObjCnt_INTEGER}"/>

For many metadata elements, data type validation rules aren’t required because compliance is enforced by the

control itself. This is true for metadata elements that store Boolean, Date, and DateTime values, as well as

elements that are expected to contain codelist values.

