
ArcGIS
®

 9
ArcSDE®

 Configuration and Tuning Guide for SQL Server

Copyright © 1986–2005 ESRI
All Rights Reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under
United States copyright law and the copyright laws of the given countries of origin and applicable international
laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval
system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts
Manager, ESRI, 380 New York Street, Redlands, CA 92373, USA.

The information contained in this document is subject to change without notice.

RESTRICTED/LIMITED RIGHTS LEGEND

U.S. Government Restricted/Limited Rights: Any software, documentation, and/or data delivered hereunder is
subject to the terms of the License Agreement. In no event shall the Government acquire greater than
RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the Government is subject
to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987);
and/or FAR §12.211/12.212 [Commercial Technical Data/Computer Software]; DFARS §252.227-7015
 (NOV 1995) [Technical Data]; and/or DFARS §227.7202 [Computer Software], as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.
ESRI, MapObjects, ArcView, ArcIMS, SDE, and the ESRI globe logo are trademarks of ESRI, registered in the
United States and certain other countries; registration is pending in the European Community. ArcSDE, ArcInfo
Librarian, Spatial Database Engine, ArcCatalog, ArcToolbox, ArcMap, ArcGIS, ArcStorm, ArcInfo, ArcObjects,
ArcExplorer, ArcEditor, and the ArcInfo logo are trademarks and www.esri.com is a service mark of ESRI.
The names of other companies and products mentioned herein are trademarks or registered trademarks of their
respective trademark owners.

Contents

Contents iii

Getting started 1
Configuring SQL Server 1
Configuring dbtune storage parameters 2
Managing tables, feature classes, raster columns, and views 2
Connecting to SQL Server 2
National language support 2
Backup and recovery 3

Configuring SQL Server 5
Introduction 5
Installing and configuring Microsoft® SQL Server 6
Creating and managing databases and file groups 7
Managing security 11

Configuring Dbtune Storage Parameters 27
The SDE_dbtune table 27
Understanding keywords 31
Understanding parameter name—config string pairs 39

Managing tables, feature classes, raster columns, and views 49
Setting up the dbtune table 49
ArcSDE to Microsoft SQL Server data type mapping 49
Importing data 50
Managing data 56
Exporting data 58
Dropping data 58
Defining ArcSDE views 59
Choosing an ArcSDE log file configuration 62

Connecting to SQL Server 65
Connection modes 65
Making your first connection 66

 ArcSDE Configuration and Tuning Guide for Microsoft SQL Server

Using the ArcSDE direct connect driver 67

National language support 71
SQL Server database collation designator 71
Character encoding standards supported by ArcSDE 73

Backup and recovery 75
Understanding backup and restore 75
Backing up ArcSDE spatial databases 77
Restoring and recovering ArcSDE spatial databases 81
Managing transaction logs 84
Moving data using backup and restore 87
Moving data using sp_detach_db and sp_attach_db 90

ArcSDE compressed binary 93
Compressed binary 93
The spatial grid index 96
Indexes 100

Storing raster data 109
Raster schema 112

The well-known binary representation 121
Numeric type definitions 121
XDR (big endian) encoding of numeric types 122
NDR (little endian) encoding of numeric types 122
Conversion between the NDR and XDR representations of WKB geometry 122
Description of WKBGeometry byte streams 122
Assertions for well-known binary representation for geometry 125

Storing locators 127
Locator schema 128

Making a direct connection 137
What files do you need? 137
How to get your database setup files 139
Environment variables 139
Client/database compatibility 141
Registration and authorization 141
Setting up clients for SQL Server direct connect 142

Storing XML Data 145
Configuring ArcSDE for SQL Server 145

Contents v

ArcSDE XML columns database schema 149

C H A P T E R 1

Getting started

Creating and populating a geodatabase is arguably a simple process,

especially if you use ESRI's ArcCatalog or ArcToolbox to load the data.

So why is there a configuration and tuning guide? While data loading

might be relatively simple, the choices you as the ArcSDE database

administrator must make about data storage, security, recoverability, and

performance may be more complex.

This book provides instruction for configuring the logical and physical

storage parameters of your data in SQL Server as well as important

guidelines for performance and troubleshooting.

Configuring SQL Server
Building a geodatabase involves proper configuration of the SQL Server instance,
management of the physical database files, and implementation of user security. Chapter
2, 'Configuring SQL Server' provides information on these three topics.

You will learn:

• Which SQL Server configuration parameters you might want or need to modify.

• How to use the Post-Installer to create a geodatabase.

• How to configure security settings for the 'SDE' and other users, on servers with
Windows Authentication, or Mixed-mode authentication.

2 ArcSDE Configuration and Tuning Guide for SQL Server

Configuring dbtune storage parameters
Every table and index in a database has creation parameters that control the physical
storage within database files. These parameters include the type of index created
(clustered or non-clustered), index fillfactor, placement on file groups, and text-in-row
settings.

The storage configuration of ArcSDE data is controlled by settings in the SDE_dbtune
table. Storage parameters are grouped under configuration keywords that you assign to
data objects (tables and indexes) when you create them from ArcSDE client programs,
such as ArcCatalog.

Chapter 3 'Configuring dbtune storage parameters' describes in detail the SDE_dbtune
table and all possible storage parameters and default configuration keywords.

Managing tables, feature classes, raster columns, and
views

ArcCatalog and ArcToolbox are graphical user interfaces (GUIs) specifically designed to
simplify the creation and management of a spatial database. These applications provide
the easiest method for creating spatial data in a SQL Server database. With these tools,
you can convert existing ESRI coverages and shapefiles into ArcSDE feature classes as
well as import and export data between personal and ArcSDE geodatabases.

An alternative approach to creating spatial data in a SQL Server database is to use the
administration tools provided with ArcSDE. These tools allow you to import tabular and
spatial data from ArcSDE export files and raster datasets.

Chapter 4, 'Managing tables, feature classes, raster columns, and views' describes
methods to create and maintain spatial data in a SQL Server database.

Connecting to SQL Server
Chapter 5, 'Connecting to SQL Server' covers how to make your initial connection to
ArcSDE under a three-tiered configuration, how to connect in a two-tier configuration,
and how to operate only in a two-tier environment without installing ArcSDE.
Connections using ArcObjects and from ArcIMS are also covered.

National language support
Storing data in an ArcSDE SQL Server database using collation sets other than the SQL
Server default, Latin1_General, requires some extra configuration on both the client and
the server. Chapter 6, 'National language support', provides guidelines for configuring
both the SQL Server database and the ArcSDE client environment to enable the use of
collation sets other than Latin1_General.

Chapter 1—Getting started 3

Backup and recovery

Developing and testing a backup strategy is every bit as important as the effort put into
creating your geodatabase. A good backup strategy protects your geodatabase in the
event of media failure.

Chapter 6, 'Backup and recovery' discusses SQL Server backup types, transaction log
management, recovering database from backups, and using backup to move data between
servers.

4 ArcSDE Configuration and Tuning Guide for SQL Server

C H A P T E R 2

Configuring SQL Server

Microsoft® SQL Server is easy to set up and configure. SQL Server has

outstanding management tools and wizards to assist you in performing

database functions. Due to its ease of use and rich user interface, there are

many possible configurations with SQL Server. This chapter guides you

through ArcSDE software-specific rules for creating and managing

databases, logins, and transaction logs.

Introduction
This chapter picks up where a new ArcSDE installation leaves off. You’ve installed
ArcSDE and let it create a spatial database and sde login/user for you. Now you must
consider how you should configure SQL Server for ArcSDE, design databases, manage
security accounts, and understand the Microsoft SQL Server transaction log.

To properly set up ArcSDE for Microsoft SQL Server you must:

1. Make some configuration changes to Microsoft SQL Server. These are detailed in
the section entitled ‘Installing and configuring Microsoft SQL Server’.

2. Design your database or databases. This is covered under the section ‘Creating and
managing databases and file groups’.

3. Design and configure your security. You can use either SQL Server or Windows
Authentication. The section ‘Managing security’ describes this.

6 ArcSDE Configuration and Tuning Guide for SQL Server

Installing and configuring Microsoft SQL Server
Installation of Microsoft SQL Server

1. Use Mixed-Mode security: Although you are not required to use Mixed-Mode
security, setup is simpler if you do. Security modes can be changed within SQL
Server through the server properties in the Enterprise Manager. Right-click your
server in the Enterprise Manager, click Properties, then click the Security tab. Enable
Mixed-Mode security. See ‘Managing security’ for details on how to use Windows
authentication with ArcSDE.

2. Collation: Choose a collation that is appropriate for your culture. ArcSDE will work
with most collations if you use the single spatial database configuration.

Microsoft SQL Server configuration

1. Limit SQL Server memory consumption: By default, SQL Server will use as
much memory as it requires. On busy systems, SQL Server can force other
applications, including ArcSDE, to page, compromising their response time and
scalability. Consider limiting SQL Server’s memory consumption by using a fixed
memory size or setting a maximum memory size. To do this, right-click the server in
the Enterprise Manager and click Properties. Within the Properties page, click the
Memory tab and hard code a memory limit or set an upper boundary to 50 percent of
total RAM. Adjust up or down as necessary.

2. Use lightweight pooling: On busy systems, configure SQL Server to use
lightweight pooling or Windows NT Fibers. Fibers, which run as processes within a
thread, reduce the number of thread context switches the processors must make.
Access this setting in the Enterprise Manager’s server properties under the Processor
tab or through sp_configure. Search the Microsoft SQL Server Books Online for
‘lightweight pooling.’

3. Boost SharedSection in the registry: This setting controls the heap size for
noninteractive desktop applications—the amount of memory available to spawn and
support Windows services, such as ArcSDE client connections. Adjust this setting if
you anticipate having more than 50 concurrent ArcSDE connections. Locate this
setting in the registry under:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\SubSystems under the Windows entry. This entry contains a string, in
which is contained SharedSection=1024,3072,512. Boost the last entry to 1024. See
the book Managing ArcSDE Application Servers for more information, or refer to
the ESRI online support center (at http://support.esri.com).

4. CPUs: If your database will support many multiversioned editors, consider that
versioned queries are CPU intensive. Consider buying more CPU than less. Make
sure you consult the ESRI System Integration system sizing tools before you buy a
server to support this type of system.

5. Number of SQL Server Licenses: This depends on which licensing mode you
employ. If you choose client access licensing, you will need as many licenses as

Chapter 2—Configuring SQL Server 7

users who will connect simultaneously, plus one for the ArcSDE application server
(the ArcSDE service).

Support for SQL Server named instances

At Microsoft SQL Server 2000, you can install multiple SQL Servers onto the same
server. Multiinstance SQL Servers are known as “named instances”. ArcSDE supports
named instances in the same manner as a default instance.

To configure ArcSDE to work with a named instance, do one of the following:

1. During the ArcSDE Post-Install, enter the named instance whenever you are
prompted for a data source or SQL Server instance name.

2. Use the sdeservice -o create tool, located in %sdehome%\bin to create a service
pointing to a particular named instance of SQL Server.

Creating and managing databases and file groups
Once you have installed the ArcSDE software and made some SQL Server configuration
changes, you can design databases to support your applications. You can either use a
single geodatabase or several geodatabases to store your data. You can employ file
groups and files to create a simple non-Redundant Array of Independent Disks (RAID)
striping strategy or employ a disk array for full data striping.

ArcSDE single spatial database model
You can store a geodatabase in a single SQL Server database, or a geodatabase can span
multiple databases. At ArcSDE 9, the default is to use a single database as a container for
a geodatabase. We refer to this as the 'single spatial database model'.

ArcSDE rules for a single spatial database:

1. 1 database = 1 geodatabase = 1 ArcSDE service.
Each ArcSDE spatial database requires its own ArcSDE service.

2. No cross database querying is allowed, except through functions that allow user
input SQL, such as Se_stream_prepare_sql or IWorkspace.ExecuteSql.

3. An sde user must own the sde metadata.

ArcSDE multiple spatial database model
If you wish to store data from a single geodatabase in more than one SQL Server
database, you must create a database called 'sde' to store the geodatabase metadata. You
can then create additional SQL Server databases to store feature classes, raster datasets,
and non-spatial tables. These additional databases are permanently related to the central
'sde' database.

ArcSDE rules for a multiple spatial database"

8 ArcSDE Configuration and Tuning Guide for SQL Server

1. 1 'sde' database (+ n additional databases) = 1 geodatabase = 1 ArcSDE service
There can only be one Multiple Spatial Database configuration per SQL Server
instance as this model is dependent on a database called 'sde'.

2. Cross database querying is permitted. Each connection must specify a database
or the user will be connected to the 'sde' database. By default, all objects in all
related databases will be listed. For controlling this behavior, see the
CROSS_DB_QUERY_FILTER parameter topic in Chapter 3.

3. An sde user must own the sde metadata.

4. The sde user must be added to each database that will store spatial data

5. Each person who connects to this geodatabase must be a user in the sde
database. Required statement (DDL) permissions will vary depending on log
file configuration. For more information on log files see Choosing an ArcSDE
log file configuration in Chapter 4.

How many geodatabases?
You can either put all your spatial data into a single geodatabase or use multiple
geodatabases to store your spatial data. (Remember, a multiple spatial database is
considered one geodatabase.) If you use more than one geodatabase, you have to create a
single ArcSDE service for each. If you create multiple ArcSDE services, consider
increasing SharedSection in the Windows registry (see Boost SharedSection in the
Registry on the previous page).

Client-side considerations

ArcIMS—If ArcIMS® servers see a different database or user in an SDEWORKSPACE
connection string, then a new set of gsrvrs will be spawned to support that map service. If
you have a distributed ArcIMS solution with multiple ArcIMS servers hosting many
virtual servers, you could create so many gsrvrs that Windows will exhaust its
noninteractive desktop memory heap. Increase the SharedSection parameter listed above
under Microsoft SQL Server configuration.

ArcGIS—ArcGIS® read/write clients intensively query and write to the sde_states,
sde_state_lineages, and sde_mvtables_modified. Any selection from an ArcGIS client
writes to an sde log file if the selection set contains more than 100 features. Set a high
SelectionThreshold in each ArcGIS client’s registry to store more selected features
locally instead of on the sde server. Setting this to 1,000 features is reasonable for many
client systems. Keep in mind that this setting requires more processing on the client side,
so make sure you have enough memory and CPU to handle it. Increase the SharedSection
parameter if you plan on serving more than 50 simultaneous ArcGIS connections.

Chapter 2—Configuring SQL Server 9

Guidelines for database creation
Here are some guidelines for creating a geodatabase.

1. Use the Post-Installer to create a spatial database. The Post-Installer will create the
spatial database, grant the sde login access to it, and install the ArcSDE system
tables.

2. Size the data files large, then use the Enterprise Manager to increase the autogrowth
increment of both the database and transaction log file. While you’re at it, make a
backup of it.

3. Store all your data files, transaction log files and tempdb separately from the paging
file, unless you’re sure your server will never page. Separate your data files from
your transaction log files and tempdb.

4. If you have a RAID 5 solution, keep your transaction log files and tempdb out of the
disk array. In general, put data files on fault-tolerant devices and tempdb and
transaction log files on mirrored or standard devices.

5. Leave AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS
enabled. Disable autoshrink.

6. Employ a hardware striping solution, favoring RAID (disk array) over file groups
and files.

7. Employ data segregation strategies (keeping tables from indexes or certain types of
tables from other tables) only if you are certain it will improve performance or
alleviate administrative burdens.

NOTE: If you wish to create a multiple spatial database (one central sde database and
additional databases) only create the 'sde' database using the Post-Installer. Use SQL
Server to create additional databases.

Hardware striping solutions
Large production ArcSDE systems should employ a hardware striping solution. Your
best disk and data organization strategies involve spreading your data across multiple
disks. With data spread across multiple disks, more spindles actively search for it. This
can increase disk read time and decrease disk contention. However, too many disks can
slow down a query. There are two main ways of achieving striping: file groups and
RAID. You can also combine the two—create file groups within disk arrays.

File groups and files

File groups and files compose a database. Data resides in files that are grouped by file
groups. The database’s primary file of the primary file group has a *.mdf extension,
while secondary files use *.ndf. Log files are stored in *.ldf files. A file group arranges
files into administrative units. Database files cannot span disks, file groups can.

10 ArcSDE Configuration and Tuning Guide for SQL Server

Files fill proportionately according to their membership in a file group. For example, if
three files comprise a file group, and file A is 20 MB, file B is 40 MB, and file C is
60 MB, one extent is allocated from file A, 2 from B, and 3 from C whenever space is
requested from a file group. All database objects are created by default on the primary
file group. Placement onto other, nondefault file groups is controlled with the “on”
keyword of the create statement. ArcSDE controls placement through the use of the
SDE_dbtune table in the same format—by adding the keyword “on” to your storage
parameters.

Not all ArcSDE installations will be on multiprocessor server class machines with disk
arrays or many disks. ArcSDE is certified to scale from Microsoft Data Engine
(MicrosoftDE) to SQL Server Enterprise Edition. If you are serving data to a few clients
on a single processor machine with one or two disk drives, employing file groups offers
no advantage.

RAID

Redundant Arrays of Inexpensive or Independent Disks (RAID) boosts fetching
performance by striping data into slices across multiple disks in the disk array. By
spreading data across multiple disks, all disks share the burden of I/O operations, thus
reducing the chance of a bottleneck occurring on one disk. RAID’s performance
increases as you add disks to the array. The operating system and database will see only
one volume—a logical representation of the entire disk array. A thorough discussion of
RAID is beyond the scope of this document.

Example: Creating a geodatabase with the ArcSDE Post-
Installer
1. Start the Post-Installer: Start > Programs > ArcGIS > ArcSDE > ArcSDE for

Microsoft SQL Server Post Installation.

2. The Post-Installer starts. Click the Custom button and click Next.

3. The Select ArcSDE Setup Wizard Option form appears. With all check boxes
checked, click Next.

4. The User Information form appears. Input the correct SQL Server instance name (for
example, Ocean or Ocean\instance01). Pick a security mode and click Next.

5. The Create Spatial database form appears.

Chapter 2—Configuring SQL Server 11

6. Input your sde user password, even if you don’t have an sde login created. The Post-
Installer will create one for you.

NOTE: The Post-Installer will only create a SQL Server authenticated sde login.

Input a database name, data file size, transaction log file size, and paths to your data
and transaction log files. Click Next to create the database.

7. Click Next in the ArcSDE Configuration Files form.

8. The next form, User Information—Connect to create SDE repository, will install or
upgrade the ArcSDE system tables. Pick an authentication type and click Next, and
the sde system tables will be created or upgraded.

9. Complete the software authorization forms and click Next until you get to the Create
the ArcSDE Service form. Input a service name, port number, sde user password,
spatial database name (use the same name as the database you just created), and the
rest of the required information.

Managing security
Once you have designed and created your databases, you now must configure your
security accounts. Create logins and users with specific functionality in mind, assign
them to roles, and finally, grant permission to those roles to interact with data.

12 ArcSDE Configuration and Tuning Guide for SQL Server

Introduction to SQL Server security

Microsoft SQL Server has logins and users. A login is a named account that has access
rights to the database server but not necessarily access to a database. A user is a login that
has been granted access to a database.

There are two types of authentication: SQL Server authentication and Windows
authentication. SQL Server authenticated accounts are valid only in SQL Server.
Windows authentication uses operating system accounts.

Microsoft SQL Server also supports roles. Roles are used to group users. Statement and
object permissions are granted to roles, and each user in a role inherits those permissions.
There are three types of roles: fixed server, database, and user-defined. Fixed server roles
span the server and apply to all databases. Database and user-defined roles pertain to a
specific database.

Logins and users: Rules for the single spatial database model
1. The sde user must have create table, create view, create procedure, and create

function privilege within the spatial database.

2. Data owners must have create table and create procedure privilege in the spatial
database.

3. A login’s default database is used only when connecting with direct connect and not
specifying a database argument.

4. Cross database querying capability is disabled for all functions except those that
allow user-defined SQL queries (SE_stream_prepare_sql, IWorkspace.ExecuteSql,
SeConnection.PrepareSql()).

5. Use of a separate account for each user is no longer required if you use session or
stand-alone log files. However, it is still recommended.

6. You cannot use a SQL Server reserved word for a login or username. Examples of
reserved words are Max, National, and Count. See the SQL Server Books Online for
a complete listing.

Chapter 2—Configuring SQL Server 13

ArcSDE users rule matrix

User In Spatial database

sde User create table, create view, create procedure,
create function (SQL Server 2000)

Other User create table, create procedure if will own data

All connecting users will require create table permission in the geodatabase unless your
ArcSDE service uses the new session-based log file functionality. To enable the new
session-based log file functionality, set these parameters using the sdeconfig.exe tool:

ALLOWSESSIONLOGFILE TRUE
LOGFILEPOOLSIZE # this value will depend on the number of simultaneous connections
HOLDLOGPOOLTABLES TRUE

Set this config string in your sde_dbtune table:

LOGFILE_DEFAULTS SESSION_TEMP_TABLE 1

Logins and users: Rules for the multiple spatial database
model
1. The sde user must have create table, create view, create procedure, and create

function privilege within the sde database.

2. Data owners must have create table and create procedure privilege in the databases
where they will create data (feature classes, raster datasets, non-spatial tables)

3. A login’s default database is used only when connecting with direct connect and not
specifying a database argument. When making an application server connection, if
no database is specified, a connection will be made to the sde database.

4. Cross database querying capability is enabled.

5. Use of a separate account for each user is no longer required if you will use the new
sde log file functionality. However, it is still recommended.

6. You cannot use a SQL Server reserved word for a login or username. Examples of
reserved words are Max, National, and Count. See the SQL Server Books Online for
a complete listing.

14 ArcSDE Configuration and Tuning Guide for SQL Server

ArcSDE users rule matrix

User In sde database In other database(s)

sde User create table, create view, create
procedure, create function

sde must be a user in each additional
database but no statement permissions
required

Other User

create table, create procedure if will own
data,
all users require create table is using
shared log files

create table, create procedure if will
own data

All connecting users will require create table permission in the sde database unless your
ArcSDE service uses the new session-based log file functionality. To enable the new
session-based log file functionality, set these parameters using the sdeconfig.exe tool:

ALLOWSESSIONLOGFILE TRUE
LOGFILEPOOLSIZE # this value will depend on the number of simultaneous connections
HOLDLOGPOOLTABLES TRUE

Set this config string in your sde_dbtune table:

LOGFILE_DEFAULTS SESSION_TEMP_TABLE 1

Designing your security
Setting up your security follows this general process:

1. Create logins and assign those logins to databases. The logins become users.

2. Create database roles or use existing roles and add users to them.

3. Grant statement or object permission to those roles.

Security considerations

1. For simplest administration

a. Use SQL Server authentication only.

b. The sde user must have create table, procedure, view, and function in the spatial
database. Adding the sde login to the sysadmin fixed server role is not
supported.

c. Create individual SQL Server logins and add them to roles within a spatial
database. If they need read permission to all tables, add them to the
db_datareader role within the spatial database.

2. For tightest security

a. Configure ArcSDE and SQL Server to use only Windows logins.

b. Grant no permissions on data to the Public role.

Chapter 2—Configuring SQL Server 15

c. Do not add any login to the db_owner database role.

d. Never save your username and password in an ArcGIS connection file.

e. Use direct connect.

3. Preserve the sde login as the ArcSDE system administrator; do not use it for other
operations. Do not add the sde login to the sysadmin fixed server role.

Using SQL Server authentication
SQL Server authentication is easiest to administer but less secure than Windows
authentication. This section demonstrates creating new SQL Server logins with both the
Enterprise Manager and Transact-SQL, granting these logins access to databases, adding
these users to database roles, and finally, granting statement or object permission to these
roles.

Enterprise Manager—Create logins and grant database access

1. Open the SQL Server Enterprise Manager, expand your server’s node, expand the
security node, and select the logins node.

2. In the details panel on the right, right-click and click New login. Click the SQL
Server Authentication button, name the login, and provide a password. Assign a
default database.

3. Click the Database Access tab. In the Permit column, check the desired spatial
database. In the form below, a login is granted access to the PWBWATER database.

4. Click OK and you’ll be prompted to confirm your password. The process both

16 ArcSDE Configuration and Tuning Guide for SQL Server

creates the new login and grants it access to a database or databases. (In other words,
it adds that login as a user to a database).

Enterprise Manager—Create a role and add users

1. Click the databases node in the Enterprise Manager. Expand your database. Click the
roles node.

2. Right-click within the Details pane on the right side, click New database role, Name
your role. Click Add and add users.

3. Click OK.

Enterprise Manager—Grant statement permissions to a role

Statement permissions are the right to create, alter, or drop something. ArcSDE data
owners must have create table and create procedure privilege. To grant statement
permissions to a role:

1. Expand your databases node in the Enterprise Manager.

2. Right-click your spatial database > click Properties > click the Permissions tab.

Chapter 2—Configuring SQL Server 17

3. Locate your role in the User/Role column of this form. Check the desired statement
permission. In the form below, the Editors role has been granted Create Table and
Create SP.

In this example, Ian, Bill, and Roger are all members of the Editors role. These accounts
inherit the right to create tables and procedures through membership in the Editors role.

Grant object permissions to a role

Object permissions are the right to access data through select, insert, update, or delete
statements. For ArcSDE, this is best done through either the sdelayer -o grant command
or ArcGIS. Using the Editors role from above, this example will grant all members of the
Editors role the right to query and edit features in the buildings feature class:

sdelayer -o grant -l buildings,shape -U Editors -A
SELECT,INSERT,UPDATE,DELETE -i esri_sde -D spatialdb -u dataowner

From ArcCatalog™: Connect to your spatial database, find the buildings feature class,
right-click it, then click Privileges. Type the role name in the form and check a
permission.

18 ArcSDE Configuration and Tuning Guide for SQL Server

Using Transact-SQL
Scripting the creation of your logins and users is much faster than using the Enterprise
Manager. The same rules apply as with the Enterprise Manager. Below is a SQL script
that will demonstrate this.

/*
 Add sde and non-sde login and user
*/

/*
 Step1: Add the logins to the server using
 the sp_addlogin stored procedure.
 sp_addlogin '<login_name>','<pass>','<default_db>'
*/

use master
go
sp_addlogin 'sde','spatial.data','spatialdb'
go
sp_addlogin 'Ian','design_nature','spatialdb'
go

/*
 Step2: Grant the login access to the spatial database
 using sp_grantdbaccess. Grant the user create table
 and stored procedure. You must switch to the spatial
 database to do this.
*/

use spatialdb
go
sp_grantdbaccess 'sde'
go
sp_grantdbaccess 'Ian'
go
grant create table to sde
grant create procedure to sde
grant create view to sde
grant create function to sde --SQL Server 2k only!
Go
/* create a role called Editors */
sp_addrole 'Editors'
go
sp_addrolemember @rolename='Editors', @membername='Ian'
go
/* grant statement permissions to Editors */
Grant Create table to Editors
Grant Create Procedure to Editors

Using Windows authentication
Windows authentication offers some advantages over SQL Server authentication.
Windows authentication is generally more secure than SQL Server authentication since it
uses a certificate-based security mechanism. It is usually easier to configure since you
can add existing Windows groups, containing Windows logins, to the SQL Server.

Chapter 2—Configuring SQL Server 19

Finally, at connection time, the user is generally not required to enter a username and
password. A single sign-on at login time provides access to all services that support
Windows authentication.

ArcSDE 9 for Microsoft SQL Server supports Windows authentication with some
restrictions:

1. Windows groups are supported for data manipulation language (DML) (select,
insert, update, delete) operations only. Members of Windows groups cannot create
data through ArcSDE.

2. If you must have Windows users create data, then those users must be granted access
individually (not through a Windows group) and cannot have a domain name in their
database username. If your login name is TERRA\bob, then your database username
must be “bob”.

3. You cannot connect through ArcSDE as a different Windows user than your present
login. If you logged in as TERRA\Ian, you cannot make a Windows authenticated
connection as GLOBE\Ian.

4. You cannot restrict access to the %SDEHOME%\bin directory on the server if you
connect through the application server. The application server spawns processes in
the security context of the connecting Windows user. To correctly spawn the
process, this directory must not be restricted to the connecting user. This is not a
concern for direct connect Windows authenticated connections.

5. Not all ArcSDE clients support single sign-on, meaning you’ll have to enter your
username to connect to ArcSDE services. At ArcSDE 9, only the ArcSDE
administration commands support single sign-on. ArcGIS requires you to submit a
username and password.

Because Windows authentication can add some complexity to managing an ArcSDE for
SQL Server instance, it is recommended that novice ArcSDE users stick to SQL Server
authentication until they are more comfortable with the product.

Using Windows groups with ArcSDE

Windows groups are supported only for DML (select, insert, update, delete) operations.
Members of Windows groups cannot create data in their SQL Server database through
ArcSDE. Follow this process to use Windows groups in ArcSDE:

1. Add the Windows group as a login to SQL Server:

a. Enterprise Manager—Open your SQL Server Instance > Security branch >
right-click logins > add new login. Click the ellipsis button next to the name text
box to open the domain user browser form. Select your domain in the List
Names From combo box and scroll to the Windows group listed in the Names
box. Select your Windows group, click add, then click OK. Back in the SQL
Server Login Properties > New Login form, click the Database Access tab.
Select the database to which you want this group to have access. Verify that the
group name does not contain the DOMAIN\. Click OK.

20 ArcSDE Configuration and Tuning Guide for SQL Server

b. Transact-SQL—Open the Query Analyzer or OSQL and execute this statement:

exec sp_grantlogin @loginame='TERRA\gis_users'

2. Grant the Windows group database access:

a. Enterprise Manager—See 1.a above or expand your database node, right-click
the users item, scroll the Login name combo box, and select your Windows
group. Once you select your Windows group, it will automatically populate the
user name field. If, for example, your Windows group name is
“TERRA\gis_users”, the user name field will list “TERRA\gis_users”. If you
will add this Windows group to an existing SQL Server role, click the rolename
from the Database role membership box and click OK. If you will not add this
Windows group to an existing SQL Server role, remove the domain name and
backslash (“TERRA\”) from the user name field.

b. Transact-SQL—Grant the Windows group database access using the
sp_grantdbaccess system stored procedure. Run the command from the Query
Analyzer or OSQL:

exec sp_grantdbaccess @loginame='TERRA\gis_users',
@name_in_db='gis_users'

3. Grant permission to your data to the Windows group. If you’ve created your data
with ArcGIS, use ArcCatalog to grant permission. If you created your data with the
sde command line administration tools, use the sdelayer or sdetable commands. To
grant permission directly to a Windows group, the group name cannot contain the
DOMAIN\ within it. See points 1 and 2 above. Alternatively, you can create a SQL
Server role, add the Windows group to the role, and grant permission to the role.

a. Using sdelayer:

sdelayer -o grant -U gis_users -A SELECT,INSERT,UPDATE,DELETE -i
5151 -D CityDb -u gisdataowner -p go -l parcels,shape

b. Using ArcCatalog: Connect to ArcSDE as data owner, right-click the dataset to
which you’ll grant permissions, and click Privileges. Type in the group name or
role name, then select the desired permission level (SELECT, INSERT,
UPDATE, DELETE). Click OK.

NOTE: If you wish to grant permission directly to a Windows group, that group
name cannot contain the DOMAIN\ in its database username.

Windows accounts and data ownership

If you want a Windows account to create and own data through ArcSDE, you must add
that account individually to SQL Server. Windows accounts that access SQL Server
through group membership cannot own data because that account’s database username
contains the DOMAIN/ name and “\”. This naming convention will cause problems
within the database when creating tables. If you want a Windows account to create and
own data, the login’s database username cannot contain the DOMAIN\. For example,
Windows account “TERRA\Ian” must only be “Ian” in a database.

Chapter 2—Configuring SQL Server 21

Connecting to an ArcSDE service as a Windows login

When you connect with Windows authentication to an ArcSDE service, you must be
presently logged in as that user. If not, your connection will fail.

With some ArcSDE clients, you can connect to an ArcSDE service without using a
username or password. The examples below use the administration commands to
demonstrate this functionality.

sdelayer:

C:\>sdelayer -o describe -i 5151

Database : VTEST
Table Owner : VTEST
Table Name : SANDIEGO_NET_JUNCTIONS
Spatial Column : SHAPE
Layer id : 8
Entities : npc
Layer Type : SDE
I/O Mode : NORMAL
User Privileges : SELECT, UPDATE, INSERT, DELETE
Layer Configuration: DEFAULTS

sdetable:

C:\>sdetable -o create -t authentication_test -d "colA string" -i 5151

Successfully created table authentication_test.

sdeimport:

E:\world_sdex>sdeimport -o create -l test,shp -i 5151 -f roads

Importing SDEX from roads ...
1165 features read.
1165 features stored.

ArcGIS clients must submit a username and password. The ArcSDE C application
programming interface (API) (used by ArcGIS) compares the submitted username
against the presently logged in user. If these two differ, the connection is rejected. For
example, if you log in to GLOBE\bob but try to connect as user TERRA\bob, your
connection will fail. The password is not used since authentication occurs within the
operating system. However, you are still required to submit one.

When using Windows authentication from ArcGIS, all login forms will require the
domain\username convention. Other forms, such as the Privileges form, require only the
username. Following is an example of a Windows authenticated login from ArcGIS.

22 ArcSDE Configuration and Tuning Guide for SQL Server

Using Windows sde login

You can use a Windows sde login instead of a SQL Server authenticated sde login. Keep
in mind that the Post-Installer will always create a SQL Server sde authenticated login.
Although you can do this, you may experience difficulties with some operations, such as
compress.

To use an integrated sde login:

1. Create a Windows sde login. Add this login to the SQL Server logins collection on
your SQL Server instance that will host ArcSDE. This account will be the logon
account for the sde service. This account must be granted these security policies on
the server: replace a process-level token, act as part of the operating system, and
create a token object.

2. Create a spatial database. Add the sde login to this database as a user.

NOTE: The sde username must be “sde” and cannot contain a domain name such as
“TERRA\sde”.

Grant this user create table, view, stored procedure, and function privileges.

3. Start the ArcSDE Post-Installation Utility. When the application opens, click the
Custom button. Click Next. The Select ArcSDE Setup Option Wizard form opens.
Deselect the first option to Define Database and sde user and click Next.

4. The User Information form opens. Verify that the server name is correct and change
the database name to the name of the database you created. Specify a login type and
click Next. The Post-Installer will begin to create the ArcSDE system tables, stored
procedures, view, and functions. Click Next to authorize your software.

5. Once your software is authorized, proceed to the ArcSDE Service Information Form.
In this form, type your service name and port. Use “” for the sde user’s password.

Chapter 2—Configuring SQL Server 23

Type the database name you created in step 2 and verify that the remaining
information is correct. Click Next. Do not start the ArcSDE service.

6. Open the Windows Services panel, double-click the service you just created. Click
the Logon tab. Click the This Account button, then browse to the Windows sde
account. Type the correct sde user password, click OK, and start your service.

NOTE: It is recommended that if you employ a Windows sde user and you wish to use
Windows authenticated logins, you should use only direct connect for those connections.

Using roles

Once you have created logins and granted them user access to databases, you should
create roles and assign those users to roles. Add your users to roles based on operations
they’ll perform. For example:

• Viewers: users that have read-only access to data

• Editors: users that will edit data in a database

• Developers: users that will create and deploy applications based on data in a
database

There are four types of roles: database, user-defined, fixed server, and application.
Application roles are not supported. Database roles are preexisting, SQL Server-defined
roles. User-defined roles are created by an administrator within a database. Fixed server
roles pertain to all databases.

Adding a database user to a role simplifies administration by reducing the number of
things you have to do per user. If you define a role that has create table and procedure
privileges and add all your ArcSDE users to it, you have reduced the number of times
you have to grant a privilege to each one.

Create a user-defined role with sp_addrole or the Enterprise Manager. For example,
sp_addrole 'Editors' will create a user-defined role “Editors” owned by the dbo user.
You would now add users to this role with the Microsoft SQL Server Enterprise Manager
or the sp_addrolemember stored procedure:

sp_addrolemember 'Editors','Ian'

Using database roles

Database roles are preexisting roles that carry implicit privileges and permissions. Public
is a database role that all users belong to. Exercise extreme caution when using database
roles, as they can produce unexpected side effects. The advantage of using database roles
is that they carry implicit permissions and privileges, resulting in less work.

When to use database roles:

• Db_datareader: Grants/Select permission on all tables in a database to a role
member.

24 ArcSDE Configuration and Tuning Guide for SQL Server

• Db_ddladmin: Permits a user to run any Dynamic-Link Library (DDL) statement in
a database.

• Db_owner: Makes a user sysadmin of a database without changing the username to
“dbo”.

Fixed server roles

Fixed server roles pertain to the server and, hence, all databases. There are two main
issues to consider: if you add a user to the sysadmin fixed server role, anything that a user
creates in the database is owned by “dbo” in any database; you can add a user to multiple,
sometimes conflicting, roles. This last point will assuredly cause problems when you
connect and attempt to view (or load) your data. It is easy to do this, so make sure you
don’t. The following screenshot shows SQL Server 2000 doing this. Be careful you don’t
do this!

Adding a login to all fixed server roles—Don’t do this!

Granting permission to data to those roles

Once you’ve created logins, added them as users to databases, and added those users to
roles, it is either time to load data or grant permission on that data to the roles. Chapter 4
covers data loading; but before you can load and grant permissions, you must decide who
should own the data and, henceforth, do the granting.

Chapter 2—Configuring SQL Server 25

Who should own the data?

Designate one user as the owner of all your data. Load all your data as that user and grant
permissions to that data to roles. The advantage of this system is that your database will
not get cluttered with tables belonging to several different users. If you load all your data
and build ArcGIS complex features, then add your data owner to the sysadmin fixed
server role, you may cause problems maintaining those complex features.

Granting permissions

If you loaded your data using the ArcSDE command tools, use the sdelayer -o grant or -o
revoke command to grant or revoke a privilege (select, insert, update, delete) to a role.
For example, you have an “Editors” role in the spatial database. To grant select, insert,
update, delete permissions against an ArcSDE feature class, ‘county_hiways’ use the
following command

sdelayer -o grant -U highways_editors -A SELECT, INSERT, UPDATE, DELETE -l
county_hiways,shape -u county -p big.bob -i esri_sde -s vogon

If you used ArcGIS to load data, you must use ArcGIS to grant permission to that data.
Right-click the feature class, table, raster dataset, or feature dataset in ArcCatalog and
click Privileges.

NOTE: A user or role must have insert, update, and delete privileges to make
multiversioned edits.

26 ArcSDE Configuration and Tuning Guide for SQL Server

C H A P T E R 3

Configuring Dbtune Storage
Parameters

ArcSDE feature classes, rasters, and non-spatial tables are made up of one

or more tables stored within a SQL Server database. When these objects

are created, ArcSDE submits Create table and Create index statements

directly to the underlying database. These statements are formulated by

ArcSDE and are based in part on input provided by the user at the time of

the table's creation.

Create table and Create index statements have optional arguments that are used to
control the physical placement and structure of the object. These arguments are used
to place an object on a specific file group or to control the structure of an index. You
can customize the statements created by ArcSDE to include these optional arguments
through the use of a configuration keyword, specified at load time. This
configuration keyword references customization parameters stored in an ArcSDE
metadata table, SDE_dbtune.

The SDE_dbtune table allows a database administrator to control data placement,
index architecture, and binary data storage. This chapter explains the purpose of
SDE_dbtune and the keywords, parameters, and configuration settings it contains.

The SDE_dbtune table
The SDE_dbtune table is created by the ArcSDE postinstallation wizard, or the
sdesetupmssql.exe command. The SDE_dbtune table has the following definitions:

28 ArcSDE Configuration and Tuning Guide for SQL Server

Column name Data type Length Allows null
keyword varchar 32 No
parameter_name varchar 32 No
config_string varchar 2048 Yes

After the SDE_dbtune table has been created, it is automatically populated with the
contents of the dbtune.sde file, located in the %SDEHOME%\etc directory. If an
SDE_dbtune table already exists, the postinstallation may update some of its contents.

The keyword field stores keywords referenced when creating data in the database. Within
each keyword there are a number of parameters, each stored in the parameter_name field.
Each parameter has a configuration string associated with it, stored in the config_string
field.

The SDE_dbtune table is used for the following:

1. Loading tables and indexes onto specific file groups

2. Specifying an index created as either clustered or nonclustered

3. Dictating the percentage to which an index page is filled

4. Specifying the amount of binary data that can be stored in data pages (as

opposed to image pages)

5. Setting specific server-wide parameters

How it works
An ArcSDE feature class or raster dataset is made up of a business table and several
supporting tables. When each table is created ArcSDE issues Create table and Create
index commands directly to SQL Server for execution. ArcSDE formats these statements
based on inputs specified during the loading process, such as table name and field
definitions. The SDE_dbtune table stores additional parameters that can be used to
further customize the creation of ArcSDE objects. These parameters are normally
controlled by the database administrator as they impact the physical storage of data. The
database administrator would configure values in the SDE_dbtune table. A keyword is
then specified during the loading process, and ArcSDE reads related values from the
SDE_dbtune table to determine how to create tables and indexes. The values read from
SDE_dbtune are appended to Create table and Create index statements.

For example, you will load a raster dataset into an ArcSDE spatial database. By default,
ArcSDE will fill index pages to 75 percent capacity. In this example, the raster will not
change once loaded so you decide you'd like to fill each index page to 100 percent
capacity, thus reducing table size and the total number of index pages. You also want to
place this index on a special file group, RAS_FG. You add a keyword, RASTERS, to the
SDE_dbtune table that instructs ArcSDE to apply these nondefault values.

Chapter 3—Configuring dbtune storage parameters 29

The RASTERS keyword has a parameter, BLK_INDEX_COMPOSITE, which allows
you to specify an index fillfactor and file group for the composite index of the raster's
block table. The entry in the SDE_dbtune table would look like this:

Keyword Parameter_name Config_string

RASTERS BLK_INDEX_COMPOSITE With fillfactor = 100 on ras_fg

You would reference this keyword by specifying a Configuration Keyword in
ArcCatalog or by using the -k switch of the sderaster command, for example,

sderaster –o import –l ColoFloodPlain,image –g –f cfp002.tif –k rasters…

When you execute the above command, the loader reads the -k RASTERS keyword and
creates the block table's composite index with a fillfactor of 100 percent on the file group
'ras_fg'. The Transact-SQL statement that is issued to SQL Server would look like this:

CREATE UNIQUE CLUSTERED INDEX [SDE_blk_4_pk} ON [dbo].[SDE_blk_4]
([rasterband_id], [rrd_factor}, [row_nbr], [col_nbr]) WITH FILLFACTOR =
100 ON [ras_fg]

Parameter names not listed under the RASTERS keyword are read from the DEFAULTS
keyword. Parameter_names will be redundant in this table; each keyword can specify a
parameter already listed under DEFAULTS.

The rules for the SDE_dbtune table are:

1. SDE_dbtune is used to control data placement, index fill factors, index clustering,
and binary data in lining.

2. If you don't specify a keyword when you load data, you use settings defined under
DEFAULTS.

3. If you supply an incomplete keyword, missing parameters and config_strings are
read from the DEFAULTS keyword.

4. You are not required to make any additional edits to SDE_dbtune to make the
software work.

5. You can add new keywords with any valid name. You must use the parameter_name
and config_string values supplied in this chapter. You cannot invent new
parameter_names and config_strings.

6. You can modify existing config_string values.

Editing the SDE_dbtune table
Administrators can add keywords and change config_strings in SDE_dbtune. You can
edit the contents of the SDE_dbtune table with the SQL Server Enterprise Manager,
SQL statements, or the sdedbtune command.

To edit the SDE_dbtune table with the SQL Server Enterprise Manager, find the table in
the tables list within the database node. Right-click the table and click Open table, then

30 ArcSDE Configuration and Tuning Guide for SQL Server

click Return all rows. You can also select the table, click the Action menu, click Open
table and click Return all rows. Make changes to config_strings by clicking within a cell
and entering new values. Press return to commit the change. To insert new dbtune
records, scroll to the end of the table and click in the cell to the right of the asterisk.
Keyword values cannot be null.

Using Transact-SQL statements is more complex, as you'll have to be familiar with the
insert, update, and delete statements. These topics are beyond the scope of this book.
Consult Microsoft SQL Server Books Online for more information.

The sdedbtune command exports the contents of the SDE_dbtune table to a file. The file
can then be edited and reimported into the SDE_dbtune table. In the following example,
the SDE_dbtune table is exported, edited, and reimported into the source table.

This command creates a file, dbtune.out, in the %SDEHOME%\etc folder.

C:\>sdedbtune -o export -f dbtune.out -s theodolite -D sde -u sde

This command opens the dbtune.out file in WordPad.

C:\>write %sdehome%\etc\dbtune.sde

After editing, the file is reimported to the SDE_dbtune table using the following
command:

C:\>sdedbtune -o import -f dbtune.out -s theodolite -D sde -u sde

ArcSDE 8.1 Build 664 Tue Dec 26 22:32:22 PST 2000
Attribute Administration Utility

Import SDE_dbtune Table. Are you sure? (Y/N): y

 Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune command always exports to and imports from the etc directory of the
ArcSDE home directory.

Editing a dbtune file
The sdedbtune -o export command creates a text file in the %SDEHOME%\etc. This text
file, which can have any name, contains the contents of the SDE_dbtune table at the time
it was exported. It has been formatted for easy editing.

Each keyword appears only once, prefaced by two pound (#) signs:

##DEFAULTS

After each keyword comes a list of parameter_names and their config_string values:

B_CLUSTER_ROWID 0
B_CLUSTER_SHAPE 1
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"

Chapter 3—Configuring dbtune storage parameters 31

B_INDEX_SHAPE "WITH FILLFACTOR = 75 ON FG1"

The parameter_name listings are followed by the END keyword:

##TESTKEYWORD
B_CLUSTER_ROWID 0
B_CLUSTER_SHAPE 1
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_SHAPE "WITH FILLFACTOR = 75 ON FG1"
END

Each keyword and list of related parameter_names must be followed by the END
keyword. If the END keyword is missing from the end of any of the keyword listings, the
file cannot be reloaded into the SDE_dbtune table.

Each parameter_name and its config_string are delimited by either spaces or tab keys.
Additional empty lines or line feed characters are ignored by ArcSDE. Any nonnumeric
config_string values must be enclosed in double quotes in the file if you are editing the
SDE_dbtune table using Transact-SQL statements. If you are editing the table directly in
the Enterprise Manager, double quotes are not used.

Understanding keywords
The SDE_dbtune table is grouped by keyword. At ArcSDE 9, the following keywords
are included by default:

Select distinct(keyword) from sde.sde_dbtune

DATA_DICTIONARY
DEFAULTS
IMS_METADATA
IMS_METADATARELATIONSHIPS
IMS_METADATATAGS
IMS_METADATATHUMBNAILS
IMS_METADATAUSERS
IMS_METADATAVALUES
IMS_METADATAWORDINDEX
IMS_METADATAWORDS
LOGFILE_DEFAULTS
NETWORK_DEFAULTS
NETWORK_DEFAULTS::DESC
NETWORK_DEFAULTS::NETWORK
SURVEY_MULTI_BINARY
TOPOLOGY_DEFAULTS
TOPOLOGY_DEFAULTS::DIRTYAREAS

You reference a keyword when loading data with ArcSDE command tools or ArcCatalog
or creating ArcIMS metadata server documents. When you build ArcGIS features, such
as geometric networks, you can also reference a keyword.

32 ArcSDE Configuration and Tuning Guide for SQL Server

DEFAULTS keyword
The DEFAULTS keyword has 78 parameter_names and config_string pairs. The
DEFAULTS keyword is used when:

1. You create an object within an ArcSDE database and don't specify an SDE_dbtune
keyword.

2. You customize or create new keywords but do not supply all parameter_names or
config_strings. Missing parameter_names and config_strings will be read from the
DEFAULTS keyword list.

You can modify config_strings within the DEFAULTS keyword to apply those settings
to new objects (tables and indexes) created by the ArcSDE application.

SDE_dbtune sample showing some records of the DEFAULTS keyword:

keyword parameter_name config_string
DEFAULTS A_CLUSTER_RASTER 0
DEFAULTS A_CLUSTER_ROWID 0

Dbtune file sample showing same records:

##DEFAULTS
A_CLUSTER_ROWID 0
A_CLUSTER_RASTER 0

These parameter_name and config_string pairs apply to the DEFAULTS keyword. An
explanation of each is included later in this chapter in the section entitled ‘Understanding
parameter name–config string pairs.’

##DEFAULTS
NUM_DEFAULT_CURSORS -1
CROSS_DB_QUERY_FILTER 0
UI_TEXT ""
A_CLUSTER_ROWID 0
A_CLUSTER_SHAPE 1
A_CLUSTER_STATEID 0
A_CLUSTER_USER 0
A_CLUSTER_XML 0
A_CLUSTER_RASTER 0
A_INDEX_ROWID "WITH FILLFACTOR = 75"
A_INDEX_SHAPE "WITH FILLFACTOR = 75"
A_INDEX_STATEID "WITH FILLFACTOR = 75"
A_INDEX_USER "WITH FILLFACTOR = 75"
A_INDEX_XML "WITH FILLFACTOR = 75"
A_INDEX_RASTER "WITH FILLFACTOR = 75"
A_TEXT_IN_ROW 256
A_STORAGE ""
B_CLUSTER_ROWID 0
B_CLUSTER_SHAPE 1
B_CLUSTER_USER 0
B_CLUSTER_XML 0
B_CLUSTER_RASTER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_SHAPE "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"

Chapter 3—Configuring dbtune storage parameters 33

B_INDEX_XML "WITH FILLFACTOR = 75"
B_INDEX_RASTER "WITH FILLFACTOR = 75"
B_STORAGE ""
B_TEXT_IN_ROW 256
D_CLUSTER_ALL 0
D_CLUSTER_DELETED_AT 1
D_INDEX_ALL "WITH FILLFACTOR = 75"
D_INDEX_DELETED_AT "WITH FILLFACTOR = 75"
D_STORAGE ""
F_CLUSTER_FID 1
F_INDEX_AREA "WITH FILLFACTOR = 75"
F_INDEX_FID "WITH FILLFACTOR = 75"
F_INDEX_LEN "WITH FILLFACTOR = 75"
F_STORAGE ""
F_TEXT_IN_ROW 256
S_CLUSTER_ALL 1
S_CLUSTER_SP_FID 0
S_INDEX_ALL "WITH FILLFACTOR = 75"
S_INDEX_SP_FID "WITH FILLFACTOR = 75"
S_STORAGE ""
RAS_STORAGE ""
RAS_CLUSTER_ID 1
RAS_INDEX_ID "WITH FILLFACTOR = 75"
BND_STORAGE ""
BND_CLUSTER_ID 0
BND_INDEX_ID "WITH FILLFACTOR = 75"
BND_CLUSTER_COMPOSITE 0
BND_INDEX_COMPOSITE "WITH FILLFACTOR = 75"
AUX_STORAGE ""
AUX_CLUSTER_COMPOSITE 1
AUX_INDEX_COMPOSITE "WITH FILLFACTOR = 75"
BLK_STORAGE ""
BLK_CLUSTER_COMPOSITE 1
BLK_INDEX_COMPOSITE "WITH FILLFACTOR = 75"
END

DATA_DICTIONARY keyword
When the ArcSDE system tables are created during setup, the ArcSDE and geodatabase
system tables and indexes are created with the storage parameters of the
DATA_DICTIONARY keyword. To influence where and how these tables are created,
you have two options:

1. Drop any existing ArcSDE system tables (be careful), edit the dbtune.sde file in
%SDEHOME%etc, then run sdesetupmssql -o install.

2. Create a custom dbtune.sde file, run the ArcSDE post installation utility, and browse
to it during the ArcSDE configuration files portion of the setup.

To alter placement of existing tables, use the Enterprise Manager or Transact-SQL to
add files and file groups. See the SQL Server Books Online for more information.

If your site makes extensive use of a multiversioned database, consider separating the
SDE_MVTABLES_MODIFIED, SDE_STATE_LINEAGES, and SDE_STATES tables
and indexes into their own file groups to reduce I/O contention. If the dbtune.sde file does

34 ArcSDE Configuration and Tuning Guide for SQL Server

not contain the DATA_DICTIONARY keyword or if any of the required parameters are
missing from the keyword, the following records will be inserted into the
DATA_DICTIONARY when the table is created.

These parameter names and config_strings apply to the DATA_DICTIONARY
keyword:

##DATA_DICTIONARY
B_CLUSTER_ROWID 0
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"
B_STORAGE ""
MVTABLES_MODIFIED_INDEX "WITH FILLFACTOR = 75"
MVTABLES_MODIFIED_TABLE ""
STATE_LINEAGES_INDEX "WITH FILLFACTOR = 75"
STATE_LINEAGES_TABLE ""
STATES_INDEX "WITH FILLFACTOR = 75"
STATES_TABLE ""
VERSIONS_INDEX "WITH FILLFACTOR = 75"
VERSIONS_TABLE ""
XML_INDEX_TAGS_INDEX "WITH FILLFACTOR = 75"
XML_INDEX_TAGS_TABLE ""
XML_TAGS_PK_INDEX "WITH FILLFACTOR = 75"
XML_TAGS_TABLE ""
XML_TAGS_UK_INDEX "WITH FILLFACTOR = 75"
END

The XML_INDEX_TAGS_* parameters govern allocations on the sde_index_tags table.
This table can grow and will be frequently accessed by applications, such as the ArcIMS
Metadata Server, that use the XML document type. The XML_TAGS_* parameters
control allocations of the SDE_XML_TAGS table. This table will also be actively used
by the Metadata Server. The XML_TAGS_PK_INDEX is clustered by default and
cannot be separated from its table.

LOGFILE keywords
ArcSDE maintains temporary and persistent sets of selected records through log file
tables. There are two general types of log files, session based and standard.

Session log files employ a pool of log file tables while standard log files employ two log
file tables per user, SDE_Logfiles and SDE_Logfile_data. Session log files are created
during setup. Standard log files are created during the first connection a user makes or re-
created if they have been deleted the next time a user connects.

Most installations of ArcSDE will function well using the LOGFILE_DEFAULTS
parameters. However, for applications that make heavy use of log files, such as
ArcInfo™, ArcEditor™, ArcIMS Metadata Server, and ArcView®, it may help scalability
to spread the log files across separate file groups. ArcGIS clients write log files whenever
a selection set exceeds 100 records. Following are log file parameters and config_strings
from the dbtune.sde file:

##LOGFILE_DEFAULTS
LD_CLUSTER_ALL 0

Chapter 3—Configuring dbtune storage parameters 35

LD_CLUSTER_ROWID 1
LD_INDEX_ALL "WITH FILLFACTOR = 75"
LD_INDEX_ROWID "WITH FILLFACTOR = 75"
LD_STORAGE ""
LF_CLUSTER_ID 0
LF_CLUSTER_NAME 0
LF_INDEX_ID "WITH FILLFACTOR = 75"
LF_INDEX_NAME "WITH FILLFACTOR = 75"
LF_STORAGE ""
UI_TEXT ""
END

Three extra log file parameters will appear in your SDE_dbtune table:

SESSION_INDEX WITH FILLFACTOR=75
SESSION_STORAGE
SESSION_TEMP_TABLE 1

IMS_METADATA keywords
The IMS_METADATA keywords are a standard part of the SDE_dbtune table. If these
keywords are not present in a dbtune file when it is imported into the SDE_dbtune table,
ArcSDE will supply software defaults. The software defaults have the same parameters
listed in the dbtune.sde file that is shipped with ArcSDE:

IMS_METADATA
IMS_METADATARELATIONSHIPS
IMS_METADATATAGS
IMS_METADATATHUMBNAILS
IMS_METADATAUSERS
IMS_METADATAVALUES
IMS_METADATAWORDINDEX
IMS_METADATAWORDS

These keywords are now obsolete. They will not be used by ArcSDE or ArcIMS
Metadata Services. The gazetteer import scripts provided with ArcIMS 9.1 do not use the
above keywords to load the gazetteer data into ArcSDE. For information on configuring
XML storage, please read the 'XML type parameters' topic on page 41 of this chapter and
Appendix F 'Storing XML Data'.

NETWORK_DEFAULTS keyword
The NETWORK_DEFAULTS keyword contains the default parameters for the ArcGIS
network class. If no keyword is supplied upon creation of a geometric network,
parameters are read from this keyword. If a keyword containing incomplete
parameter_names is used during network creation, missing parameter names will be
supplied from the DEFAULTS keyword.

A geometric network will create several new tables within the database. The largest table
will generally be the N_<id>_DESC table, so make sure its corresponding SDE_dbtune
keyword, NETWORK_DEFAULTS::DESC, either explicitly lists or defaults to a file
group that will accommodate large table and index growth.

##NETWORK_DEFAULTS

36 ArcSDE Configuration and Tuning Guide for SQL Server

UI_NETWORK_TEXT "The network default configuration"
COMMENT "The base system initialization parameters for
NETWORK_DEFAULTS"
A_CLUSTER_ROWID 0
A_CLUSTER_SHAPE 1
A_CLUSTER_STATEID 0
A_CLUSTER_USER 0
A_INDEX_ROWID "WITH FILLFACTOR = 75"
A_INDEX_SHAPE "WITH FILLFACTOR = 75"
A_INDEX_STATEID "WITH FILLFACTOR = 75"
A_INDEX_USER "WITH FILLFACTOR = 75"
A_TEXT_IN_ROW 256
A_STORAGE ""
B_CLUSTER_ROWID 0
B_CLUSTER_SHAPE 1
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_SHAPE "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"
B_STORAGE ""
B_TEXT_IN_ROW 256
D_CLUSTER_ALL 0
D_CLUSTER_DELETED_AT 1
D_INDEX_ALL "WITH FILLFACTOR = 75"
D_INDEX_DELETED_AT "WITH FILLFACTOR = 75"
D_STORAGE ""
F_CLUSTER_FID 1
F_INDEX_AREA "WITH FILLFACTOR = 75"
F_INDEX_FID "WITH FILLFACTOR = 75"
F_INDEX_LEN "WITH FILLFACTOR = 75"
F_STORAGE ""
F_TEXT_IN_ROW 256
S_CLUSTER_ALL 1
S_CLUSTER_SP_FID 0
S_INDEX_ALL "WITH FILLFACTOR = 75"
S_INDEX_SP_FID "WITH FILLFACTOR = 75"
S_STORAGE ""
END

Network Composite keywords
The composite keyword is a unique type of keyword designed to accommodate the tables
of the ArcGIS network class. The network table's size variation requires a keyword that
provides configuration parameters for both large and small tables. Typically, the network
descriptions table is large in comparison with the others. To accommodate the vast
difference in size of the network tables, the network composite keyword is subdivided
into elements. A network composite keyword has three elements: the parent element
defines the general characteristic of the keyword and the junctions feature class, the
description element defines the configuration of the DESCRIPTIONS table and its
indexes, and the network element defines the configuration of the remaining network
tables and their indexes. The parent element does not have a suffix, and its keyword looks
like any other keyword. The description element is demarcated by the addition of the
::DESC suffix to the parent element's keyword, and the network element is demarcated
by the addition of the ::NETWORK suffix to the parent element's keyword.

Chapter 3—Configuring dbtune storage parameters 37

Network composite keywords listed from the dbtune.sde file:

##NETWORK_DEFAULTS::DESC
A_CLUSTER_ROWID 1
A_CLUSTER_STATEID 0
A_CLUSTER_USER 0
A_INDEX_ROWID "WITH FILLFACTOR = 75"
A_INDEX_STATEID "WITH FILLFACTOR = 75"
A_INDEX_USER "WITH FILLFACTOR = 75"
A_TEXT_IN_ROW 256
A_STORAGE ""
B_CLUSTER_ROWID 1
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"
B_STORAGE ""
B_TEXT_IN_ROW 256
D_CLUSTER_ALL 0
D_CLUSTER_DELETED_AT 1
D_CLUSTER_STATE_ROWID 0
D_INDEX_ALL "WITH FILLFACTOR = 75"
D_INDEX_DELETED_AT "WITH FILLFACTOR = 75"
D_INDEX_STATE_ROWID "WITH FILLFACTOR = 75"
D_STORAGE ""
END

##NETWORK_DEFAULTS::NETWORK
A_CLUSTER_ROWID 1
A_CLUSTER_STATEID 0
A_CLUSTER_USER 0
A_INDEX_ROWID "WITH FILLFACTOR = 75"
A_INDEX_STATEID "WITH FILLFACTOR = 75"
A_INDEX_USER "WITH FILLFACTOR = 75"
A_TEXT_IN_ROW 256
A_STORAGE ""
B_CLUSTER_ROWID 1
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"
B_STORAGE ""
B_TEXT_IN_ROW 256
D_CLUSTER_ALL 0
D_CLUSTER_DELETED_AT 1
D_INDEX_ALL "WITH FILLFACTOR = 75"
D_INDEX_DELETED_AT "WITH FILLFACTOR = 75"
D_STORAGE ""
END

TOPOLOGY keyword
The Topology keyword controls the storage of topology tables, which are named
POINTERRORS, LINEERRORS, POLYERRORS, and DIRTYAREAS. An SDE
instance must have a valid topology keyword in the dbtune table, or topology will not be
built.

38 ArcSDE Configuration and Tuning Guide for SQL Server

The DIRTYAREAS table maintains information on areas within a layer that have been
changed. Because it tracks versions, data will be inserted or updated but not deleted
during normal use. The DIRTYAREAS table will reduce in size only when database
versions get compressed.

Because the DIRTYAREAS table is much more active than the remaining topology
tables, the TOPOLOGY keyword may be compounded. You may specify the
DIRTYAREAS suffix to list the configuration string to be used to create the topology
tables.

Topology keywords and parameter name–config string pairs from dbtune.sde:

##TOPOLOGY_DEFAULTS
UI_TOPOLOGY_TEXT "The topology default configuration"
A_CLUSTER_ROWID 0
A_CLUSTER_SHAPE 1
A_CLUSTER_STATEID 0
A_CLUSTER_USER 0
A_INDEX_ROWID "WITH FILLFACTOR = 75"
A_INDEX_SHAPE "WITH FILLFACTOR = 75"
A_INDEX_STATEID "WITH FILLFACTOR = 75"
A_INDEX_USER "WITH FILLFACTOR = 75"
A_TEXT_IN_ROW 256
A_STORAGE ""
B_CLUSTER_ROWID 0
B_CLUSTER_SHAPE 1
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_SHAPE "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"
B_STORAGE ""
B_TEXT_IN_ROW 256
D_CLUSTER_ALL 0
D_CLUSTER_DELETED_AT 1
D_INDEX_ALL "WITH FILLFACTOR = 75"
D_INDEX_DELETED_AT "WITH FILLFACTOR = 75"
D_STORAGE ""
F_CLUSTER_FID 1
F_INDEX_AREA "WITH FILLFACTOR = 75"
F_INDEX_FID "WITH FILLFACTOR = 75"
F_INDEX_LEN "WITH FILLFACTOR = 75"
F_STORAGE ""
F_TEXT_IN_ROW 256
S_CLUSTER_ALL 1
S_CLUSTER_SP_FID 0
S_INDEX_ALL "WITH FILLFACTOR = 75"
S_INDEX_SP_FID "WITH FILLFACTOR = 75"
S_STORAGE ""
END

##TOPOLOGY_DEFAULTS::DIRTYAREAS
A_CLUSTER_ROWID 0
A_CLUSTER_SHAPE 1
A_CLUSTER_STATEID 0
A_CLUSTER_USER 0
A_INDEX_ROWID "WITH FILLFACTOR = 75"
A_INDEX_SHAPE "WITH FILLFACTOR = 75"

Chapter 3—Configuring dbtune storage parameters 39

A_INDEX_STATEID "WITH FILLFACTOR = 75"
A_INDEX_USER "WITH FILLFACTOR = 75"
A_TEXT_IN_ROW 256
A_STORAGE ""
B_CLUSTER_ROWID 0
B_CLUSTER_SHAPE 1
B_CLUSTER_USER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_SHAPE "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"
B_STORAGE ""
B_TEXT_IN_ROW 256
D_CLUSTER_ALL 0
D_CLUSTER_DELETED_AT 1
D_INDEX_ALL "WITH FILLFACTOR = 75"
D_INDEX_DELETED_AT "WITH FILLFACTOR = 90"
D_STORAGE ""
F_CLUSTER_FID 1
F_INDEX_AREA "WITH FILLFACTOR = 75"
F_INDEX_FID "WITH FILLFACTOR = 75"
F_INDEX_LEN "WITH FILLFACTOR = 75"
F_STORAGE ""
F_TEXT_IN_ROW 256
S_CLUSTER_ALL 1
S_CLUSTER_SP_FID 0
S_INDEX_ALL "WITH FILLFACTOR = 75"
S_INDEX_SP_FID "WITH FILLFACTOR = 75"
S_STORAGE ""
END

Understanding parameter name—config string pairs
Parameter name—config strings pairs are used by ArcSDE to identify:

1. Where a table or index is created (file group)

2. Whether or not to cluster an index

3. How much to fill each index page (FILLFACTOR)

4. How much binary data should be stored inline to a data page (TEXT_IN_ROW)

There are a few additional parameter_names that are keyword specific. Parameter_names
identify the object to be configured, while config_strings identify how that object will be
configured. Parameter_names are fixed; you cannot invent new parameter_names.
Likewise, config_strings accept only certain numeric values or SQL strings. These strings
are appended to Transact-SQL CREATE TABLE and CREATE INDEX statements.

The SDE_dbtune table is ordered by keyword. Keyword/Parameter_name combinations
are unique, but most parameter_names are not and are reused many times throughout the
table.

40 ArcSDE Configuration and Tuning Guide for SQL Server

Adds Table (Multi-Version Table) Parameters
An Adds table is a multiversioned table that stores edits made against a feature class in a
multi-versioned database. It is almost identical in structure to the business table but has
additional columns to track state ids. Nonspatial tables have no shape column, so you
should cluster another index. Adds table parameters begin with “A”.

A_CLUSTER_ROWID 0
Index type for rowid column on Adds table; 0 = non-clustered index; 1 = clustered index.

A_CLUSTER_SHAPE 1
Index type for Add table shape column; 0 = non-clustered index; 1 = clustered index.

A_CLUSTER_STATEID 0
Index type for Adds table stateid column; 0 = non-clustered index; 1 = clustered index.

A_CLUSTER_USER 0
Index type for any user defined indexes on Adds table; 0 = non-clustered; 1 = clustered.

A_CLUSTER_XML 0
Index type for xml doc type column of Adds table; 0 = non-clustered; 1 = clustered.

A_CLUSTER_RASTER 0
Index type for raster column in Adds table; 0 = non-clustered; 1 = clustered.

A_INDEX_ROWID "WITH FILLFACTOR = 75"
FILLFACTOR and location (file group) for ROWID column index of Adds Table. To specify a file
group, use the SQL 'ON' statement. Eg:
 A_index_rowid "with fillfactor=99 on IDXfg"

A_INDEX_SHAPE "WITH FILLFACTOR = 75"
FILLFACTOR and location (file group) for shape column index of Adds Table. To specify a file
group, use the SQL 'ON' statement. Eg:
 A_index_shape "with fillfactor=99 on SHAPEfg"

A_INDEX_STATEID "WITH FILLFACTOR = 75"
FILLFACTOR and location (file group) for STATEID column index of Adds Table. To specify a
file group, use the SQL 'ON' statement. Eg:
 A_index_stateid "with fillfactor=99 on STATEIDXfg"

A_INDEX_USER "WITH FILLFACTOR = 75"
FILLFACTOR and location (file group) for any user defined indexes on Adds Table. To specify a
file group, use the SQL 'ON' statement. Eg:
 A_index_USER "with fillfactor=99 on IDXfg"

A_INDEX_XML "WITH FILLFACTOR = 75"
FILLFACTOR and location (file group) for XML index on Adds Table. To specify a file group, use
the SQL 'ON' statement. Eg:
 A_index_XML "with fillfactor=99 on XMLfg"

A_INDEX_RASTER "WITH FILLFACTOR = 75"
FILLFACTOR and location (file group) for raster index on Adds Table. To specify a file group,
use the SQL 'ON' statement. Eg: A_index_RASTER "with fillfactor=99 on RASfg"

A_TEXT_IN_ROW 256
Amount, in bytes, of image (SE_blob) data type (vector or raster) to store directly in the data
page of the table.

Chapter 3—Configuring dbtune storage parameters 41

A_STORAGE ""
File group location for Adds table. Use the on keyword to control location. Eg: A_STORAGE "ON
ADDS_FG"

NOTE: You cannot separate a clustered index from its table.

BUSINESS table parameters
The BUSINESS table is the ATTRIBUTE table of a FEATURE class. BUSINESS tables
can also be nonspatial. If you have a nonspatial BUSINESS table, do one of the
following:

1. Change the B_CLUSTER_ROWID parameter's config_string to 1 and the
B_CLUSTER_SHAPE parameter's config_string to 0. This will create a clustered
index on the ObjectID field. Any subsequent user-defined indexes you create will be
nonclustered.

2. Change the B_CLUSTER_USER parameter's config_string to 1. The first user-
defined index created by ArcSDE will be clustered. Change B_CLUSTER_SHAPE
to 0.

3. Create the data and change whatever index (or composite indexes) you would like to
be clustered.

BUSINESS table parameters begin with B.

B_CLUSTER_ROWID 0
B_CLUSTER_SHAPE 1
B_CLUSTER_USER 0
B_CLUSTER_XML 0
B_CLUSTER_RASTER 0
B_INDEX_ROWID "WITH FILLFACTOR = 75"
B_INDEX_SHAPE "WITH FILLFACTOR = 75"
B_INDEX_USER "WITH FILLFACTOR = 75"
B_INDEX_XML "WITH FILLFACTOR = 75"
B_INDEX_RASTER "WITH FILLFACTOR = 75"
B_STORAGE ""
B_TEXT_IN_ROW 256

Business table parameters work in the same fashion as ADDS table parameters. To
change them, see the section on ADDS tables.

DELETES table parameters
The DELETES table is used to track updates and deletes against multiversioned tables.
All DELETES table parameters begin with “D”.

D_CLUSTER_ALL 0
Index type for SDE_STATES_ID, SDE_DELETES_ROW_ID, and DELETED_AT column. 0 =
non-clustered; 1 = clustered.

D_CLUSTER_DELETED_AT 1
Index type for DELETED_AT column; 0 = non-clustered; 1 = clustered.

42 ArcSDE Configuration and Tuning Guide for SQL Server

D_INDEX_ALL "WITH FILLFACTOR = 75"
FILLFACTOR and location (file group) for composite index on SDE_STATES_ID,
SDE_DELETES_ROW_ID, and DELETED_AT columns. Eg:
 D_INDEX_ALL "with fillfactor=99 on Deletes_fg"

D_INDEX_DELETED_AT "WITH FILLFACTOR = 75"
Fillfactor and location (file group) for index on DELETED_AT column. Eg:
 D_INDEX_DELETED_AT "with fillfactor=80 on Deletes_fg"

D_STORAGE ""
File group location for deletes table. Use the on keyword to control location. Eg: D_STORAGE
"ON Deletes_fg"

NOTE: you cannot separate a table from its clustered index.

DELETES table parameters work in the same fashion as ADDS table parameters. To
customize Deletes table config_strings, see the above section on the ADDS tables.

FEATURE table parameters
The Feature table stores each shape's extent and geometry. It will also contain records
from multiversioned inserts and updates. All Feature table parameters begin with “F”.

F_CLUSTER_FID 1
Index type for FID column. 0 = non-clustered; 1 = clustered.

F_INDEX_AREA "WITH FILLFACTOR = 75"
Fillfactor and location (file group) for area column index. Eg:
 F_INDEX_AREA "WITH FILLFACTOR = 90 ON F_IDX"

F_INDEX_FID "WITH FILLFACTOR = 75"
Fillfactor and location (file group) for fid column index. Eg:
 F_INDEX_FID "WITH FILLFACTOR = 90 ON F_IDX"

F_INDEX_LEN "WITH FILLFACTOR = 75"
Fillfactor and location (file group) for len column index. Eg:
 F_INDEX_LEN "With FILLFACTOR = 90 on F_IDX"

F_STORAGE ""
File group location for f table. Use the on keyword to control location. Eg:
F_STORAGE "WITH FILLFACTOR=90 on F_IDX"
NOTE: You cannot separate a table from its clustered index.

F_TEXT_IN_ROW 256
Amount, in bytes, of image (SE_blob) data type (vector or raster) to store directly in the data
page of the table.

SPATIAL INDEX table parameters
The Spatial Index is a grid that overlays features and is used to identify features to fetch.
The bounding box of spatial query is overlaid against the spatial index table to select
candidate shapes satisfying the query. Spatial index table parameters begin with “S.”

S_CLUSTER_ALL 1
Index type for primary key (all columns of table). 1 = clustered; 0 = non-clustered.

Chapter 3—Configuring dbtune storage parameters 43

S_CLUSTER_SP_FID 0
Index type for sp_fid column. 1 = clustered; 0 = non-clustered.

S_INDEX_ALL "WITH FILLFACTOR = 75"
Fillfactor and location (file group) for primary key. Eg:
 S_INDEX_ALL "With FILLFACTOR = 90 on S_IDX"

S_INDEX_SP_FID "WITH FILLFACTOR = 75"
Fillfactor and location (file group) for sp_fid column index. Eg:
 S_INDEX_SP_FID "WITH FILLFACTOR = 85 on S_IDX"

S_STORAGE ""
File group location for S table. Use the on keyword to control location. Eg:
S_STORAGE "WITH FILLFACTOR=95 on S_IDX"
NOTE: You cannot separate a table from its clustered index.

RASTER table parameters
Rasters in ArcSDE are stored as 5 separate tables: a band table (SDE_bnd_#), a block
table (SDE_blk_#), a raster table (SDE_ras_#), an auxiliary table (SDE_aux_#), and a
business table. Of these tables, only the block table will get large. Make certain that the
BND_CLUSTER_COMPOSITE config_string is set to 1 to ensure that a clustered index
is generated for this table. Raster table parameters begin with AUX, BLK, BND, and
RAS. Rasters can be stored as embedded catalogs, or columns to sde feature classes or
can be stand-alone layers. Business table parameters are read from the B_ settings.

RAS_STORAGE ""
File group location for RAS table. Use the ON keyword to control location. Eg:
 RAS_STORAGE " ON RAS_FG"

RAS_CLUSTER_ID 1
Index type for primary key of RAS table. 1 = clustered; 0 = nonclustered.

RAS_INDEX_ID "WITH FILLFACTOR = 75"
Fillfactor and location (file group) for primary key. Eg:
 RAS_INDEX_ID "WITH FILLFACTOR = 85 ON RAS_FG"

BND_STORAGE ""
File group location for BND table. Use the on keyword to control location. Eg:
 BND_STORAGE " ON BND_FG"

BND_CLUSTER_ID 0
Index type for RASTER_ID, SEQUENCE_NBR columns. 1 = clustered; 0 = nonclustered.

BND_INDEX_ID "WITH FILLFACTOR = 75"
Fillfactor and file group location for RASTER_ID, SEQUENCE_NBR column index. Eg:
 BND_INDEX_ID "WITH FILLFACTOR = 90 ON BND_FG"

BND_CLUSTER_COMPOSITE 0
Index type for primary key; 1 = clustered; 0 = nonclustered.

BND_INDEX_COMPOSITE "WITH FILLFACTOR = 75"
Fillfactor and file group location for primary key. Eg:
 BND_INDEX_COMPOSITE "WITH FILLFACTOR = 90 ON BND_FG"

44 ArcSDE Configuration and Tuning Guide for SQL Server

AUX_STORAGE ""
File group location for Auxiliary table. Use ON keyword to specify location: Eg:
AUX_STORAGE "ON AUX_FG"

AUX_CLUSTER_COMPOSITE 1
Index type for primary key. 1 = clustered; 0 = non-clustered.

AUX_INDEX_COMPOSITE "WITH FILLFACTOR = 75"
Fillfactor and file group location for primary key. Eg:
 AUX_INDEX_COMPOSITE "WITH FILLFACTOR = 90 ON AUX_FG"

BLK_STORAGE ""
File group location for block table. Use ON keyword to specify location. Eg:
 BLK_STORAGE "ON BLK_FG"

BLK_CLUSTER_COMPOSITE 1
Index type for primary key. 1 = clustered; 0 = non-clustered.

BLK_INDEX_COMPOSITE "WITH FILLFACTOR = 75"
File group location for block table. Use ON keyword to specify location. Eg:
BLK_INDEX_COMPOSITE "WITH FILLFACTOR = 95 ON BLK_FG"

XML type parameters
ArcSDE business tables that contain an SE_XML_TYPE column will employ two side
tables to store the XML document and the XML document's index. XML document
tables will have three parameters:

XML_DOC_INDEX "WITH FILLFACTOR = 75"
XML_DOC_STORAGE ""
XML_DOC_TEXT_IN_ROW 1024

XML_DOC_STORAGE provides the storage string for the table's creation statement.
XML_DOC_INDEX has the index fillfactor and storage parameters, while the
text_in_row pertains to in lining blob data. See the following section ‘Text in row
parameters’ for more information.

XML document index tables are the most heavily accessed of the XML tables and have
more dbtune parameters.

XML_IDX_CLUSTER_DOUBLE 0
XML_IDX_CLUSTER_ID 0
XML_IDX_CLUSTER_PK 1
XML_IDX_CLUSTER_TAG 0
XML_IDX_FULLTEXT_CAT "SDE_DEFAULT_CAT"
XML_IDX_FULLTEXT_LANGUAGE ""
XML_IDX_FULLTEXT_TIMESTAMP 1
XML_IDX_FULLTEXT_UPDATE_METHOD "CHANGE_TRACKING BACKGROUND"
XML_IDX_INDEX_DOUBLE "WITH FILLFACTOR = 75"
XML_IDX_INDEX_ID "WITH FILLFACTOR = 75"
XML_IDX_INDEX_PK "WITH FILLFACTOR = 75"
XML_IDX_INDEX_TAG "WITH FILLFACTOR = 75"
XML_IDX_STORAGE ""
XML_IDX_TEXT_IN_ROW 128

The first four parameters, XML_IDX_CLUSTER_DOUBLE, XML_IDX_CLUSTER_ID,
XML_IDX_CLUSTER_PK, and XML_IDX_CLUSTER_TAG, dictate which index of the XML

Chapter 3—Configuring dbtune storage parameters 45

document index table should be clustered. By default, the primary key's index (on the
xml_key_column) is clustered. XML_IDX_FULLTEXT_CAT contains the name of the full text
catalog you created with sp_fulltext_catalog. XML_IDX_FULLTEXT_LANGUAGE
represents the language to be used in the full text catalog. The default is Neutral (“”),
which can store multiple languages.

XML_IDX_FULLTEXT_TIMESTAMP and XML_IDX_FULLTEXT_UPDATE_METHOD control full text
index maintenance. The update_method parameter dictates how changes made to the
document table are propagated to the full text index. The time stamp parameter, by
default (1), will add a time stamp column to the sde_xml_idx<xml_column_id> table. If
set to 0, no such column is added.

If update_method is set to 0 and time stamp is set to 0, then no index maintenance is
performed, and whenever ArcSDE is instructed to update the full text index (through
SE_xmlindex_update_text_index), the index will be fully populated.

If update_method is set to 0 and time stamp is set to 1, no index maintenance is
performed, and ArcSDE will perform an incremental index population—whatever has
changed since the last incremental update.

If update_method is set to CHANGE_TRACKING MANUAL, the database maintains a list of
changed rows but does not update the index.

If update_method is set to CHANGE_TRACKING BACKGROUND, the database tracks changes
and automatically updates the index.

It is recommended that you use the default settings provided in the dbtune table. If your
server is unable to service its workload, and your only recourse is to change indexing
behavior, set change tracking to manual (CHANGE_TRACKING MANUAL).

The next parameters, XML_IDX_INDEX_DOUBLE, XML_IDX_INDEX_ID,
XML_IDX_INDEX_PK, XML_IDX_INDEX_TAG, and XML_IDX_STORAGE, control index fill
factor and storage on the sde_xml_idx<xml_column_id> table. The final parameter,
xml_idx_text_in_row, controls how much of the XML document blob can be in lined.
As with most text in row settings, it is recommended that you do not change the defaults.
The next section discusses text in row.

Text in row parameters
SQL Server 2000 supports the ability to store image, text, and n text values directly in a
data row. Previous versions of SQL Server would store the images types in image data
pages. The advantage of “in lining”, or storing some image types in a data row is that you
may speed fetching of your data since queries will traverse fewer pages to find your data.
ArcSDE uses an image type column to store its geometry.

The SQL Server and ArcSDE default for text in a row is 256 bytes but can span from 24
to 7000 bytes. Be forewarned that the more image data you store in a row, the larger your
table will become, eventually slowing your queries as more pages must be traversed.
Raster data should not be stored in a row unless you can shrink the raster tile size to
83 X 83 to fit an image within the 7k page limit. This is only realistic if you store small

46 ArcSDE Configuration and Tuning Guide for SQL Server

1 bit images or 16 X 16 byte icons. Points do not need to be stored in a row, as spatial
queries against them reconstruct the features from their envelopes. By default, all
ArcSDE objects are enabled for text in a row, up to 256 bytes.

If you want to change this default setting, try to inline up to 80 percent of your vector data
up to 1k. You can ascertain this size by running the following query:

select top 20 percent(datalength(points)) from <feature table> order by
datalength(points) desc

Pick the smallest value from this result set. Raster data is usually much larger. If you
attempt to inline too much raster or vector data, you'll end up creating too many extents
and data pages.

Fill factor parameters
The *_INDEX_* parameter allows you to specify the FILLFACTOR argument for that
index. The fillfactor argument specifies how full each page in the leaf level of an index
should be. SQL Server uses a default value of 0, which means that the leaf pages of an
index are almost full, but the nonleaf pages have room for at least two more rows. User-
defined fillfactors can be between 1 and 100. If the fillfactor is 100, all pages are
completely full. With a fill factor of 75, each clustered index page starts 75 percent full.
Subsequent inserts and updates to that data add to the index page. When the page hits
100 percent capacity, it is full. Any subsequent insert or update to data in that page will
split the page.

Use FILLFACTOR to balance full index pages and page splits. When a page is split,
SQL Server moves approximately 50 percent of the data in the split page to a new page,
most likely allocated from a different extent. Page splits will fragment your tables and
compromise performance. Setting Fillfactor too low creates too many data pages and
extents to traverse in a query, thus negatively impacting performance.

Decision criteria for choosing a fillfactor:

1. Is your data read-only? Will it never be edited? If yes, set all fillfactors on your data
to 100.

2. Will your data be updated frequently? Use the defaults.

3. Will your data incur sporadic updates? Pick a range between 75–95 percent based
on how often you want to defragment your tables.

Monitor fragmented tables and page splits with DBCC SHOWCONTIG.

Clustered index parameters
All *_CLUSTER_* parameters indicate whether or not a particular index should be
clustered (1 = cluster; 0 = nonclustered). Clustered indexes store tabular data at their leaf
nodes. The data pages at the clustered index leaf level derive their order from the
clustered index key value. This has one important consequence with regard to the
SDE_dbtune table: You cannot separate a table from its clustered index.

Chapter 3—Configuring dbtune storage parameters 47

For example, you specify that a feature table's FID index be created on the FeatIdx file
group while the feature table should be stored on the Feat file group. The FID index is
created as clustered. SDE_dbtune might look like this:

Keyword Parameter_name Config_string
DEFAULTS F_INDEX_FID WITH FILLFACTOR=90 ON FEATIDX
DEFAULTS F_STORAGE ON FEAT

In the preceding example, both the feature table and feature table's index will reside on
the FeatIdx file group. The feature table is created first, then a primary key constraint is
applied to the FID column. The constraint creates a clustered index on the fid column and
references the FEATIDX file group in this statement:

Alter Table features.dbo.f4 add constraint f4_pk primary key clustered
(fid) with fillfactor=75 on FEATIDX

Therefore, the ON FEAT configuration string is redundant, as the index is created after
the table, and the F_INDEX_FID configuration string will overwrite that of
F_STORAGE.

The next example specifies a file group for the feature table but not for the feature table's
index.

Keyword Parameter_name Config_string
DEFAULTS F_INDEX_FID WITH FILLFACTOR=90
DEFAULTS F_STORAGE ON FEAT

In this case, both the feature table and clustered index on the FID column will reside on
the Feat file group. This occurs because the table is created first, and when the alter table
statement is applied no ON statement is appended because no such string is listed in the
config_string column above.

Alter table features.dbo.f5 add constraint f5_pk primary key clustered
(fid) with FILLFACTOR=75

CROSS_DB_QUERY_FILTER parameter
The CROSS_DB_QUERY_FILTER parameter has two possible settings, 0 and 1. It only
applies to multidatabase models (where an sde database holds the sde and geodatabase
metadata). By default CROSS_DB_QUERY_FILTER is set to 0.
CROSS_DB_QUERY_FILTER controls whether or not a connecting user can view
rasters or feature classes across database boundaries. In a multidatabase ArcSDE service,
you can access rasters and feature classes in any database that participates in that service,
regardless of the database they connect to. By setting CROSS_DB_QUERY_FILTER to
1, you can only view and access rasters and feature classes in the database they've
explicitly connected to. For example, given a multidatabase ArcSDE service comprised
of a SDE, fisheries, watershed, and coasts databases, if CROSS_DB_QUERY_FILTER
is set to 1, a user that connects to the fisheries database cannot view rasters or feature
classes in the watershed database. It is recommended that you migrate their data from
multidatabase services to single database services. In a single database service,
CROSS_DB_QUERY_FILTER is not used.

48 ArcSDE Configuration and Tuning Guide for SQL Server

GEOMETRY_STORAGE parameter
ArcSDE for SQL Server provides two spatial data storage formats. The
GEOMETRY_STORAGE parameter indicates which geometry storage method is to be
used. The GEOMETRY_STORAGE parameter has the following values:

• ArcSDE compressed binary format. This is the default spatial storage method of
ArcSDE for SQL Server. Set the GEOMETRY_STORAGE parameter to
SDEBINARY if you wish to store your spatial data in this format. If the
GEOMETRY_STORAGE parameter is not set, the SDEBINARY format is
assumed.

• OGC Well-known binary geometry type. This type provides a portable
representation of geometry as a contiguous stream of bytes. Set the
GEOMETRY_STORAGE parameter to OGCWKB if you wish to store your spatial
data in this format. If you wish to make this format the default, set the
GEOMETRY_STORAGE parameter to OCGWKB in the DEFAULTS
configuration keyword.

The OGC well-known binary representation supports only simple 2D geometries. Please
see Appendix C for a description of the OGC well-known binary representation.

The default value for GEOMETRY_STORAGE is SDEBINARY.

If all of the feature classes in your database use the same geometry storage method, set
the GEOMETRY_STORAGE parameter once in the DEFAULTS configuration
keyword. To change the default GEOMETRY_STORAGE from SDEBINARY to
OGCWKB, the following change is made:

DEFAULTS
GEOMETRY_STORAGE "OGCWKB"
<other parameters>
END

C H A P T E R 4

Managing tables, feature
classes, raster columns, and
views

ArcSDE spatial databases contain feature classes, nonspatial tables, tables

with raster columns, and spatial views. This chapter describes the use of

ArcSDE command tools to create, drop, and manage these entity types.

Setting up the dbtune table
ArcSDE controls data loading, including table and index file group placement, index type
(clustered or nonclustered), and index fillfactor through the dbtune table. Dbtune tables
contain keywords, parameters, and configuration parameters columns. Keywords identify
specific loading parameters. Parameters represent ArcSDE objects such as tables and
indexes. Configuration parameters specify how something should be loaded.

For further information on the dbtune table, see Chapter 3, ‘Configuring dbtune storage
parameters’.

ArcSDE to Microsoft SQL Server data type mapping
ArcSDE uses 12 general data types. These types are mapped to Microsoft SQL Server
types in the following matrix. Precision refers to the number of digits in a value, while
scale refers to the number of digits to the right of the decimal separator.

ArcSDE Data Type Microsoft SQL Server Data
Type

SE_STRING_TYPE Char, varchar

50 ArcSDE Configuration and Tuning Guide for SQL Server

ArcSDE Data Type Microsoft SQL Server Data
Type

SE_NSTRING_TYPE Nchar, nvarchar

SE_NCLOB_TYPE Text

SE_INT16_TYPE (SE_SMALLINT_TYPE) Smallint, tinyint, numeric (precision < = 4,
scale = 0)

SE_INT32_TYPE (SE_INTEGER_TYPE) Int, numeric (precision < = 9, scale = 0)

SE_INT64_TYPE Bigint, numeric (precision < 19, scale = 0)

Disabled by default; not supported by
ArcGIS; enable with sdeconfig.
Unsupported with SQL Server 7.0

SE_FLOAT32_TYPE (SE_FLOAT_TYPE) Float, numeric (precision < 7, scale > 0)

SE_FLOAT64_TYPE (SE_DOUBLE_TYPE) Real, money, smallmoney, numeric
(precision > = 7, scale > 0)

SE_DATE_TYPE Datetime, smalldatetime

SE_UUID_TYPE Uniqueidentifier

SE_BLOB_TYPE Image, binary, varbinary

Importing data
There are numerous applications that can create and load data within an ArcSDE SQL
Server database. These include:

1. ArcGIS Desktop—Use ArcCatalog to manage and populate your database. If you
use ArcGIS to access your data, you must use ArcCatalog or ArcObjects™ to
manage your spatial data.

2. ArcSDE administration commands located in the bin directory of SDEHOME.

NOTE: None of the ArcSDE admin commands are “geodatabase” enabled, meaning
they do not register the data they create, drop, or alter with the geodatabase.

3. ArcInfo Workstation—Use the Defined Layer interface to create and populate the
database.

4. ArcView GIS 3.2—Use the Database Access extension.

5. MapObjects®—Custom Common Object Model (COM) applications can be built to
create and populate databases.

Chapter 4—Managing tables, feature classes, rasters, and views 51

6. ArcSDE CAD Client extension—For AutoCAD and MicroStation users.

7. Other third party applications built with either C or Java APIs.

This document focuses on the ArcSDE administration tools. Generally, using ArcGIS to
build your data model is preferable to using the command line tools. The command line
tools are best for batch processing or for moving large amounts of data quickly.

For information on using ArcGIS to build your data, consult the following
documentation:

1. In the documentation folder of your ArcGIS installation

a. Geoprocessing_Quick_Guide.pdf

b. Geoprocessor.pdf

c. Topology_rules_poster.pdf

2. Printed manuals

a. Building a Geodatabase

b. Using ArcCatalog

Before you begin—know your data
Before you begin loading your data, get to know it. SQL Server 2000 has approximately
174 reserved words and 135 future keywords. The use of reserved words for table and
column names is not supported. See the SQL Server Books Online for more information.

The use of nonstandard identifiers is also unsupported. Such an identifier could be
naming a table “3d”. You cannot begin an ArcSDE table name with a number, pound
sign (#), or symbol.

Watch the length and naming of your columns as well. ArcSDE enforces a 32-character
limit for a column name. Column names with embedded spaces are not supported.
Finally, be aware of your data ranges, especially with date data types. SQL Server cannot
accept datetime values that precede January 1, 1753. If you attempt to load data into SQL
Server through ArcSDE with values preceding this range, the load will fail.

Creating and populating feature classes
A feature class, as defined by the ArcGIS geodatabase, is a collection of features with the
same type of geometry and attributes. ArcSDE command line tools that create feature
classes include:

• shp2sde: Load a shapefile into an ArcSDE feature class.

• sdeimport: Load an ArcSDE export file into an ArcSDE feature class.

• cov2sde: Load an ArcInfo coverage, Map LIBRARIAN, or ArcStorm™ layer into an
ArcSDE feature class.

52 ArcSDE Configuration and Tuning Guide for SQL Server

• sdelayer: When used with the -o create option, create an ArcSDE feature class from
an existing business table.

• sdegroup: Group or tile features from an existing feature class into another feature
class. Use for rapid display of large amounts of data, keeping in mind that original
attribute information is not retained.

Importing vector data from existing file-based data sources

Shp2sde, cov2sde, and sdeimport include a “-o create” operation, which allows you to
import an existing shapefile, coverage, or sde export file into an ArcSDE database. The
create operation does all of the following:

• Creates the business table using the input data as the template for the schema.

• Adds the feature class to the ArcSDE system tables.

NOTE: The command line tools do not register the feature class with the
geodatabase. A feature class that has not been registered with the geodatabase cannot
participate in ArcGIS functionality, such as topologies, geometric networks, and
feature-linked annotation.

• Puts the feature class into load_only_io mode. Load-only mode means that the
feature class has no spatial index.

• Inserts data into the feature class.

• When all the records are inserted, puts the feature class into normal_io mode.
Normal_io mode signifies that a spatial index has been built.

shp2sde

The shp2sde command converts shapefiles into ArcSDE feature classes. The spatial
column definition is read directly from the shapefile. You can use the shpinfo command
to display the shapefile column definitions.

shp2sde -o create -f rdshp -l roads,shape -u eric -p sea.floor –i 5151 –s
GISData

In this example, the -k roadsys switch identifies a dbtune parameter.

shp2sde -o create -f rdshp -l roads,shape -u eric -p sea.floor –i 5151 –s
GISData –k roadsys

To load data using a particular projection ID, specify the -G option. A full listing of
projection ID is available in the ArcSDE developer help. In this example, -G 26746
corresponds to NAD 1927 SPCS Zone California VI. The connection is made using
Windows authentication (no -u -p arguments).

Chapter 4—Managing tables, feature classes, rasters, and views 53

shp2sde -o create -l parcel,shape -i 9000 -f pars -G 26746 -D SanDiego

cov2sde

The cov2sde command converts ArcInfo coverages, ArcInfo Librarian™ library feature
classes, and ArcStorm library feature classes into ArcSDE feature classes. The create
operation derives the spatial column definition from the coverage’s feature attribute table.
Use the ArcInfo describe command to display the ArcInfo data source column
definitions.

In this example, an ArcStorm library, “roadlib”, is converted into the feature class,
“roads”.

cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100
-e l+ -u eric -p sea.floor –i 5151 –s GISData

sdeimport

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In
this example, the roadexp ArcSDE export file is converted into the feature class “roads”.
ArcSDE export files are created with the sdeexport command. This command does not
export special ArcGIS types, such as feature-linked annotation, networks, and topologies.

sdeimport -o create -l roads,shape -f roadexp -u eric -p sea.floor –i 5151
–s GISData

sdegroup

If you have large datasets, you’ll want to discourage your users from drawing these at full
extent. There is no use in drawing a million polygons at full extent, as you can see no
detail. However, your users may want to visualize what the overall shape or extent of
their data looks like. The command sdegroup takes the existing shapes from a feature
class and groups them into multipart shapes. While this may not be useful for analysis, it
does allow rapid drawing of large amounts of data because it reduces the number of
records. Polygons are generalized into polylines so as not to destroy topological
relationships. In this example, features from the parcels feature class are generalized into
tiles of 250 square meters.

sdegroup -o create -S parcel_p,shape -T parcel_group,shape -e a -a all -D
idb -i 9000 -t 250 -u dataowner –p tax.man

For a more complete discussion of sdegroup, see the ArcSDE administrator command
references.

Appending data to an existing feature class

To append data from a shapefile, coverage, or sde export file to an existing feature class,
use the -o append option of the applicable command tool. The append option will add
data to the existing data in the feature class.

shp2sde -o append -f updated_rdshp2 -l roads,shape -u eric -p sea.floor –i
5151 –s GISData

sdeimport –o append –l roads,shape –f updated_roads_exp –u eric –p
sea.floor –i 5151 –s GISData

54 ArcSDE Configuration and Tuning Guide for SQL Server

If the feature class is multiversioned, you can append features under a specified version.
In this example, features from an export file, new_structures, are appended to an existing
layer, buildings, but under “AssessorVersion”, connecting with Windows authentication.

sdeimport -o append -l buildings,shape -V AssessorVersion -f
new_structures -i 9000

Shp2sde, sdeimport, and cov2sde also allow you to truncate existing data from a feature
class before appending data to it. This is done using the -o init option.

cov2sde -o init -l roads,shape -f roadlib,arcstorm -u eric -p sea.floor –i
5151 –s GISData

shp2sde -o init -f replacement_rdshp2 -l roads,shape -u eric -p sea.floor
–i 5151 –s GISData

Creating and populating object classes (DBMS tables)
The geodatabase defines an object class as a table that stores nonspatial data. These are
also referred to as business tables. The sdetable command has options to create new
ArcSDE business tables or register existing database management system (DBMS)
tables. Registering a DBMS table allows ArcSDE to manage certain operations against
that table.

Importing tabular data from existing file-based data sources

ArcSDE provides a command line tool, tbl2sde, to import existing dBASE, INFO, or
SDE tables into an ArcSDE database. In this example, a .dbf file is imported into an
ArcSDE database using a Windows authenticated connection:

tbl2sde -o create -t elevationpts -T dbase -f elevpnt.dbf -a all
-i 9000

Tbl2sde has an sde option that allows you to create a new sde business table from an
existing sde table. In this example, table elevationpts is re-created in the database as
elevback:

tbl2sde –o create –t evelback –f elevationpts –T SDE –a all –i 9000

Tbls2sde also supports the init and append operation on that shp2sde, cov2sde, and
sdeimport support.

Registering existing business tables with ArcSDE

Existing DBMS tables can be registered with ArcSDE either through the sdetable -o
register command or with ArcCatalog. Registering a table with ArcSDE is not the same
as registering with the geodatabase. Registering an existing table with ArcSDE enables
that table to be used with ArcView 3.x, MapObjects, and ArcIMS (through ArcSDE). It
also enables that table to be used with some ArcSDE functionality, such as versioning.

In this example, an existing table, tax_pars, is registered with ArcSDE to be
multiversioned and have a new SDE managed row_id column, OBJECTID, added to it.
The connection is made via Windows authentication.

Chapter 4—Managing tables, feature classes, rasters, and views 55

sdetable -o register -t tax_pars -c OBJECTID -C SDE -V MULTI -i 9000 -D
SanDiego

Creating and populating raster datasets
Imagery can be imported into ArcSDE from either ArcGIS or by using the sderaster
command tool. For information on importing raster data into ArcSDE with ArcGIS,
consult the ArcGIS Desktop Help topic “rasters”.

The sderaster command line tool can be used to import .tif and .bsq file-based rasters. To
import a file-based raster into ArcSDE, use the -o import option:

sderaster -o import -l seatemps1Jan03,image -f 010103.tif -c lz77 -G
file=projection.prj -L -1 -u eric -p sea.floor -i 9000 -D idb

In this example, a .tif file, 001.tif, is imported into an ArcSDE database, using lz77
compression. The -G option instructs ArcSDE to read the supplied projection file and
apply its parameters to the imported raster. The -L -1 option instructs ArcSDE to build an
optimal number of pyramids on the imported raster.

Rasters can be mosaicked or grouped into catalogs using the sderaster command. If you
will load a lot of imagery into your SQL Server ArcSDE database, you must either
mosaic your rasters or load them into raster catalogs to reduce the total number of tables
you have in your spatial database. Both mosaicked rasters and embedded raster catalogs
store all raster data in a single raster dataset. Rasters mosaicked with sderaster -o mosaic
must share the same cell registration size and projection ID, while rasters loaded into
embedded catalogs do not. For a more complete discussion of mosaics and embedded
raster catalogs, see http://support.esri.com.

Raster datasets can also be loaded from sde export files as long as the export file contains
a raster.

Understanding load_only and normal_io modes
Switching the feature class to load-only mode drops the spatial index and makes the
feature class unavailable to ArcSDE clients. Bulk loading data into the feature class in
this state is much faster due to the elimination of index maintenance. Use the sdelayer
command to switch the feature class to load-only mode by specifying the “-o
load_only_io” operation.

sdelayer -o load_only_io -l roads,shape -u eric -p sea.floor –i 5151 –s
GISData –D fisheries

NOTE: A feature class, registered as multiversioned, cannot be placed in the load-only
I/O mode. However, the grid size can be altered with the sdelayer -o alter operation. The
alter operation will apply an exclusive lock on the feature class, preventing all
modifications by ArcGIS until the operation is complete.

Once the feature class is in load_only mode, you can insert features in bulk into it using
either the -o init or -o append options of shp2sde, cov2sde, or sdeimport.

56 ArcSDE Configuration and Tuning Guide for SQL Server

Switching back to normal_io mode

After data has been loaded into the feature class, you must switch the feature class to
normal_io mode to re-create all indexes and make the feature class available to clients.
For example:

sdelayer -o normal_io -l roads,shape -u eric -p sea.floor –i 5151 –D
fisheries –s GISData

Managing data

Multiversioning your data
Feature classes and business tables (object classes) can be multiversioned. Versioning is a
process that allows for multiple representations of your data without requiring duplication
or copies of the data. Versioned data is used for modeling, controlling work flow of edits,
and enabling long transactions. Versioning eliminates three fundamental problems with
relational databases: deadlocking, no support for long transactions, and restrictive
isolation levels that negatively impact scalability. Finally, ArcGIS requires data to be
multiversioned for editing. For further information on working with versioned data in
ArcGIS, refer to the Building a Geodatabase book.

In this example, the feature class “states” will be registered as multiversioned using the
sdetable alter_reg operation.

sdetable -o alter_reg -t states -c objectid -C SDE -V multi –i 5151 –s
GISData –u eric –p sea.floor

The -C option instructs ArcSDE to manage the data’s row_id column. This column is
used by the application to allocate unique IDs. When registering a class as
multiversioned, it is recommended you always allow ArcSDE to manage your row_id
column.

Tables can also be registered as multiversioned:

sdetable –o alter_reg –t population –c objected –c SDE –V multi –i 5151 –s
GISData –u eric –p sea.floor

Modifying your schema
There will be occasions when it is necessary to modify the schema of some tables. Use
ArcCatalog to add or remove columns, although this is not possible if the class is
multiversioned. Both ArcCatalog and sdelayer allow you to modify the spatial index
(grids) and add and drop column indexes.

To change the size of an ArcSDE spatial index, use the sdelayer -o alter command. In this
example, a spatial index’s size is changed to a cell size of 1,000. The connection made
uses Windows authentication.

sdelayer -o alter -l parcel_p,shape -g 1000 -i 9000

Chapter 4—Managing tables, feature classes, rasters, and views 57

The sdetable command can be used to add an index. Control index creation parameters
using dbtune keywords.

sdetable -o create_index -t parcels -n idxOwner -c ownerfield -i 9000 –u
dataowner -p tax.man

Similarly, the sdetable command can be used to rebuild indexes when its table has
become fragmented:

sdetable -o rebuild_index -t parcels -x all -i 9000 -t parcels -u
dataowner –p tax.man

The -x all flag instructs the sde application to rebuild all indexes on this table.

Granting access to data
Once you have the data loaded, grant other users access to the data for read (select) and
write (insert, update, delete) operations. Initially, only the user who has created the
business table has access to it. To make the data available to others, the owner of the data
must grant permissions to other users. The owner can use the sdelayer command to grant
permissions. Privileges can be granted to either another user or to a role.

In this example, a user “eric” gives a role “readers” select privileges on a feature class
“depths”.

sdelayer -o grant -l depths,shape -U readers -A SELECT -u eric -p
sea.floor –i 5151 –D oceans –s GISData

In this example, full permissions are granted to the editor’s role on table ocean_temps:

sdetable –o grant –t ocean_temps –U editors –A SELECT,INSERT,UPDATE,DELETE
–u eric –p sea.floor –i 5151 –D oceans –s GISData

To grant permissions on a raster dataset or embedded raster catalog, use the sdetable -o
grant command. In this example, select permission is granted a role on a raster dataset:

sdetable -o grant -t seatemps -U ocean_viewers -A select -i 9000 -u eric -
p sea.floor

The full list of -A keywords are:

SELECT. The user may query the selected object data.

DELETE. The user may delete the selected object data.

UPDATE. The user may modify the selected object data.

INSERT. The user may add new data to the selected object data.

If you include the -I grant option, you also grant the recipient the privilege of granting
other users and roles the same privilege.

Revoking access to data
To revoke access rights to data to a user or a role, use the -o revoke option of sdelayer or
sdetable. The command operates in the same fashion as -o grant. In this example, user

58 ArcSDE Configuration and Tuning Guide for SQL Server

“eric” revokes “select” permission from the “readers” role against the “depths” feature
class:

sdelayer –o revoke –l depths,shape –U readers –A select –u eric –p
sea.floor –i 5151 –s GISData

To revoke access to a table or raster, use sdetable -o revoke. This example revokes access
to a raster dataset:

sdetable -o revoke -t seatemps -U ocean_viewers -A select -i 9000 -u eric
-p sea.floor

Exporting data
As with importing data, there are also client applications that export data from ArcSDE.
With ArcSDE the following command line tools exist:

sdeexport—Creates an ArcSDE export file to easily move feature class data between
ArcSDE instances. Also supports rasters.

sde2shp—Creates an ESRI shapefile from an ArcSDE feature class

sde2cov—Creates a coverage from an ArcSDE feature class

sde2tbl—Creates a dBASE or INFO file from an relational database management system
(RDBMS) table

These tools export ArcSDE simple features only; you cannot export geodatabase feature-
linked annotation or topologies.

Dropping data
Business tables and layers can be removed from the database with the sdetable -o delete
option. This command will drop the table or layer and remove any registration
information from the ArcSDE metadata. An example of dropping a table (not registered
with the geodatabase):

sdetable –o delete –t ocean_temps –u eric –p sea.floor –i 9000 –D

NOTE: This only removes the layer, not the business table.

sdelayer -o delete -l parcels,shape -i 9000

NOTE: If you build your data with ArcGIS and drop it with sdetable -o delete, you will
not clean up the geodatabase metadata. You must use ArcGIS tools (ArcCatalog,
ArcObjects) to drop data if you created data with it.

To drop a raster, use sderaster -o drop:

sderaster -o drop -t seatemps -i 9000 –u eric –p sea.floor

Using -o drop with the -t <business table> argument will drop the entire raster dataset. If
you want to retain the business table and only remove the raster column, use -o drop -l
<raster dataset>,<image column name>.

Chapter 4—Managing tables, feature classes, rasters, and views 59

Defining ArcSDE views
Views are stored queries or virtual tables. A view’s select statement is stored in the
database instead of the table. SQL Server 2000 allows you to create unique clustered
indexes on views and partition views across multiple servers.

Indexed views are stored in the database in the same manner as a table, while nonindexed
views store only the SQL statements comprising them.

With ArcSDE, it is possible to define views between two feature classes or between a
feature class and a table or create more complex views containing subqueries or that span
databases. ArcSDE views are created with the sdetable -o create_view command. When
you create an ArcSDE view, three views are created: business table, feature table, and
spatial index.

Creating an ArcSDE view
Use the sdetable -o create_view command to create a view and the sdetable -o delete
command to remove one. The syntax of sdetable -o create is:

sdetable -o create_view
-T <view_name>
-t <table1,table2...tablen>

-c <table_col1,table_col2...table_coln>

[-a <view_col1,view_col2...view_coln>]
[-w "where_clause">]
[-i <service>]
[-s <server_name>]
[-D <database>]
-u <DB_User_name> [-p <DB_User_password>] [-N] [-q]

You must list the columns (-c) you want in the view as well as a where clause (-w) within
the sdetable command. Be sure to include the business table’s spatial column to make the
view spatial. You must have create view permissions to execute this command.

This example creates a view of all U.S. counties with a 1990 population per square mile
greater than 50. The -s option specifies a server.

sdetable -o create_view -T CountyPopView -t us_counties -c
shape,name,state_name -w "pop90_sqmi > 50" -s GISCensus -u census -p
00census#people

This example uses a subquery to select the state whose capital city has the largest male
population.

sdetable -o create_view -T ManView -t us_states -c
us_states.shape,us_states.state_name --w "us_states.state_name = (select
us_capitals.state_name from us_capitals where p_male = (select max(p_male)
from us_capitals))" -s GISCensus -u census -p 00census#people

60 ArcSDE Configuration and Tuning Guide for SQL Server

You can also alter the business table’s view directly. In this example, a simple sde view is
created with this statement:

sdetable –o create_view –T taxpars –t taxlots –c taxlots.shape

Alter this view in the Query Analyzer to join to another table:

ALTER VIEW vwtaxlots
AS
SELECT tx.shape, p.owner1, p.owneradd, p.ownercity,
 p.ownerstat, p.bldgval, p.landval, p.totalval,
 p.bldgsqft
FROM taxlots tx
inner join taxlotinfo p on tx.shape = p.shape
GO

Cross database views

In the multidatabase model it is possible to create views between tables and SDE feature
classes that do not reside in the same database. When you do this, you must correctly
qualify the tables involved in your queries and use the -D (database) switch to identify
which database contains the data on which to create a view.

In the single spatial database model, you cannot have cross database views between two
feature classes in different databases. However, you can create a cross database view
between a feature class in one database and a table in another.

To create a cross database view involving a feature class and a table, create a simple SDE
view of the feature class first, then alter it in Query Analyzer to query the tables in the
other database.

Building on the American National Standards Institute (ANSI) SQL example above,
create a simple sde view:

sdetable –o create_view –T taxpars –t taxlots –c taxlots.shape

Now alter this view in Query Analyzer to add in an ANSI join to another table:

ALTER VIEW vwtaxlots
AS
SELECT tx.shape, p.owner1, p.owneradd, p.ownercity,
 p.ownerstat, p.bldgval, p.landval, p.totalval,
 p.bldgsqft
FROM taxlots tx
inner join parcelinfodb.dbo.taxlotinfo p on tx.shape = p.shape

Creating indexed views (SQL Server 2000)

Indexed views are a new feature of SQL Server 2000 and are advantageous when your
view definition employs a complex join. They are a good choice on static data as they are
schema bound to their source. Also, they are stored in the same way as a regular table
with a clustered index. Before you try this, make sure you are familiar with the SQL
Server Books Online documentation covering indexed views.

Creating an indexed view in SQL Server 2000 requires extra work and has many
conditions. These conditions are summarized as follows:

Chapter 4—Managing tables, feature classes, rasters, and views 61

• The view must be created with Schemabinding.

• The view must be created with QUOTED_IDENTIFIER on.

• The view cannot reference other views.

• Tables referenced in views must be two part.

• You cannot reference all columns of a table with *.

There are additional rules and conditions. Refer to the SQL Server Books Online under
the topic ‘Creating an Indexed View’ for more information.

As ArcSDE does not create schema bound views by default, follow this process:

1. Create an ArcSDE view with sdetable -o create_view.

2. Open SQL Server Query Analyzer and drop the business table view with drop view
<view name>. Before you do this, make sure you copy the view definition.

3. Re-create the business table view with the create view statement, but make sure that
you use the WITH SCHEMABINDING option and qualify your view name and
table name with the owner. <table or view name> convention.

4. Create a unique clustered index on the view with the create unique clustered index
statement.

This is an example that creates an indexed view. This example was done in SQL Server
2000 using a SQL Server authenticated user.

1. Create the view with sdetable -o create_view:

C:\sde90\etc>sdetable -o create_view -T vwWithIndx -t cagis_cent -c
parcelid,object__id,x_coord,y_coord,book,page,parcel,shp -w
"parcel>0393" -u census -p 00census#people –i sql90k -s GISCensus -D
parcels

2. Query Analyzer—Copy the view statement, then drop the view of the business table.

drop view vwWithIndx

3. Re-create the view. Make sure you qualify the view and table names with the owner
name and use the WITH SCHEMABINDING statement.

CREATE VIEW vtest.vwWithIndx
WITH SCHEMABINDING AS SELECT parcelid, object__id, x_coord, y_coord,
book, page, parcel, shp FROM vtest.cagis_cent WHERE parcel>0393

4. Create a unique clustered index on this view:

create unique clustered index shpIdxView on vtest.vwWithIndx (shp)

62 ArcSDE Configuration and Tuning Guide for SQL Server

Choosing an ArcSDE log file configuration
ArcSDE allows you to configure the allocation of ArcSDE log files to your users. You
can allow your users to own their own log files, or they can check out a log file from a
pool of log files owned by the sde user. Log files can be shared, session-based, or stand-
alone. A shared log file is the default and is used by all sessions that connect as a given
user. Also if the ArcSDE server is configured to use stand-alone log files and all available
log files of this type are exhausted, ArcSDE will attempt to create a session-based log file
if it is allowed; otherwise, a shared log file is created. If the shared log file cannot be
created, ArcSDE returns an error.

Shared ArcSDE log files
Shared log files are shared by all sessions that connect as the same user. Essentially, all
sessions insert and delete records from the same log file data table. The log files are
created the first time any session connects and remain in the user’s schema. Shared log
files require a connecting user to have CREATE TABLE in the database. To configure
your server to use only shared log files, use the sdeconfig -o alter command to set the log
file server configuration parameters as follows:

MAXSTANDALONELOGS 0
ALLOWSESSIONLOGFILE FALSE

Session-based ArcSDE log files
For session-based log files, each session that connects to the server creates a log file, even
if all connections are made as the same user.

A session-based log file is dropped when a session disconnects. To configure your server
to use session-based log files, set the server configuration parameter
ALLOWSESSIONLOGFILE to true using the sdeconfig -o alter command.

ALLOWSESSIONLOGFILE TRUE

You need to make sure that you configure enough space for the tables and indexes of the
session-based log files. The dbtune SESSION_STORAGE and SESSION_INDEX
storage parameters control the storage of session-based log files.

Stand-alone ArcSDE log files
Stand-alone log files are created by a session for each log file the application needs to
store. When an application deletes the log file, the stand-alone log file is truncated. The
stand-alone log files are dropped when the session disconnects. To configure your server
to use stand-alone log files, set the server configuration parameter
MAXSTANDALONELOGS to the number of stand-alone log files you want them to be
able to create.

For instance, set MAXSTANDALONELOGS to 6 if you want to allow each ArcSDE
session to create a maximum of six stand-alone log files.

MAXSTANDALONELOGS 6

Chapter 4—Managing tables, feature classes, rasters, and views 63

Keep in mind that you need to configure enough space to store all of these log files. The
dbtune parameters SESSION_STORAGE and SESSION_INDEX allocate space for the
tables and indexes of stand-alone log files.

If the application exhausts the number of allowable stand-alone log files or needs to
simultaneously create more logical log files than MAXSTANDALONELOGS allows,
ArcSDE will attempt to create a session-based log file, but only if
ALLOWSESSIONLOGFILE is set to TRUE; otherwise, ArcSDE will use a shared log
file. The shared log file is created if it does not already exist. If the shared log file cannot
be created, ArcSDE returns an error.

Using an sde user pool of ArcSDE log files
The sde user can create a pool of log files that can be checked out and used as either
session-based or stand-alone log files by other users. Using a pool of sde-owned log files
avoids having to grant users create table privileges. Shared log files cannot be checked
out from an sde-owned log file pool.

To create a pool of log files, set the configuration parameter LOGPOOLSIZE to the
number of log files that need to be created. This number should reflect the number of
sessions that will connect to your server in addition to the stand-alone log files if allowed.
To calculate the total number of log files that could be checked out of the pool, use the
following formulas:

If session log files are allowed, but not stand-alone log files:

LOGPOOLSIZE = total sessions expected

If stand-alone log files are allowed, but not session log files:

LOGPOOLSIZE = MAXSTANDALONELOGS * total sessions expected

If both stand-alone log files and session log files are allowed:

LOGPOOLSIZE = (MAXSTANDALONELOGS + 1) * total sessions expected

For instance, if you compute that 100 log files are needed, the LOGPOOLSIZE
parameter would be set as follows:

LOGPOOLSIZE 100

If the pool is exhausted and another log file is needed, ArcSDE will attempt to create it in
the user’s schema. If the log file cannot be created, an error is returned.

The pooled log file tables are created or dropped whenever the LOGFILESIZE parameter
is changed.

Set the HOLDLOGPOOLTABLES server configuration parameter to TRUE if you want
the sessions to retain checked out log files. If set to false, the log files are released
whenever the application deletes all of its log files as in the case of a session log file or
whenever the log file occupying a stand-alone log file is deleted.

The storage of the tables and indexes of the log file pool is controlled by the dbtune
storage parameters SESSION_STORAGE and SESSION_INDEX.

64 ArcSDE Configuration and Tuning Guide for SQL Server

C H A P T E R 5

Connecting to SQL Server

You can operate ArcSDE under three different configurations: three

tiered with your clients connecting to a middle tier (giomgr) service; two

tiered with your clients making direct connections to the database; and

mixed, in which your server accepts both direct and three-tier

connections. This chapter covers how to make your initial connection to

ArcSDE under a three-tiered configuration, how to connect in a two-tier

configuration, and how to operate only in a two-tier environment without

installing ArcSDE.

Connection modes

Application server
The application server is the ArcSDE service that can run on the server hosting SQL
Server, or a remote server that connects to a remote SQL Server. The application server is
the giomgr.exe process that spawns gsrvr.exe processes on that same server. This type of
connection is also known as three tier.

Direct connect
The functionality of the application server is also embedded into the ArcSDE client. The
files comprising the application server and gsrvr are sdesqlsrvr90.dll and gsrvrsql90.dll.
In direct connect, the application server processes (giomgr.exe and gsrvr.exe) run in
process on the client machine. This is also known as two tier.

66 ArcSDE Configuration and Tuning Guide for SQL Server

Mixed mode
Mixed mode implies both an application server and direct connect clients are used to
connect to the spatial database. ArcSDE spatial databases are built such that you can
share databases across multiple ArcSDE services (application servers) and direct connect
clients.

Making your first connection
If you have your ArcSDE service started, then you have already successfully made a
connection to the data store (as the sde user). To successfully connect to an ArcSDE data
store as a non-sde user, these conditions must be true:

1. The connecting user has permission to access the spatial database.

a. Usernames in a spatial database cannot use reserved words such as min, max,
national, or select. Refer to the SQL Server Books Online for reserved
keywords.

b. You are no longer required to have create table permission in a database unless
they wish to create data.

c. An sde database (to store ArcSDE system tables) is no longer required. ArcSDE
system tables can be stored in any database.

2. If the connecting user will own spatial data—load spatial data with the ArcGIS data
loaders or the admin tools, such as shp2sde or sdeimport—that user must have create
table and create procedure permissions in the spatial database.

Example: Connecting to ArcSDE from ArcCatalog
Open ArcCatalog. Navigate to the Database Connections node. Expand it and select Add
Database Connection. Double-click this to bring up the connection properties dialog box.
Under server, type the name of the ArcSDE server. For Service, type either your service
instance name or your TCP/IP port (for example, 5151). For Database, type the spatial
database name. Type a username and password for the remaining text boxes.

Example: Connecting to ArcSDE through ArcObjects
To use this C# sample, reference ESRI.ArcGIS.DataSourcesGDB,
ESRI.ArcGIS.Geodatabase, ESRI.ArcGIS.System in your VS.NET Project.

PropertySetClass pProp = new PropertySetClass();
 IWorkspaceFactory workfact = new SdeWorkspaceFactoryClass();

 pProp.SetProperty("server","GISData");
 pProp.SetProperty("instance","5151");
 pProp.SetProperty("database","fisheries");
 pProp.SetProperty("user","Eric");
 pProp.SetProperty("password","sea.floor");
 pProp.SetProperty("version","sde.DEFAULT");
 try

Chapter 5—Connecting to SQL Server 67

 {
 IWorkspace pWork = workfact.Open(pProp,0);
 Console.WriteLine("connected to " + pWork.Type);
 }
 catch (System.Exception e)
 {

Console.WriteLine(e.Message + "\n" + "Cannot connect");
 }

Using the ArcSDE direct connect driver
To directly connect to your database, change the service (aka instance) property of your
sde connection to sde:sqlserver:<sqlserver instance name>. You must specify a database
name as well. For example:

sdelayer –o describe –i sde:sqlserver:GISData –D fisheries –u Eric

To connect to a named instance of SQL Server, input the named instance in the third part
of the -i argument:

sdelayer –o describe –i sde:sqlerver:GISData\data02 –D fisheries –u Eric

Understanding direct connect
The ArcSDE application server technology is also embedded into the ArcSDE client
software. Any application built with the ArcSDE C API, including ArcGIS and ArcIMS,
can bypass the ArcSDE application server to directly connect to a Microsoft SQL Server
instance, provided that instance has the ArcSDE system tables.

The ArcSDE application server converts spatial requests from an ArcSDE client into
SQL statements. The relational database executes the statements and returns result sets to
the application server. The application server, in turn, packages this result set into the
ArcSDE communication stream and ships them to the client. In a direct connection, the
application server runs within the same process as the client program on the ArcSDE
client machine.

Why use direct connect?

In direct connect, the application server runs as a thread within the client’s executing
process. This means that resources used normally by the gsrvr.exe process on the
application server are free to any process requiring them. Therefore, use direct connect as
a way of offloading a busy server. Employ direct connect when the client machine’s CPU
is significantly faster than that of the server.

When using direct connect, some operations may be slower, particularly those that
process large quantities of data within the application server. Always employ a simple
benchmark of both modes before putting direct connect into production.

68 ArcSDE Configuration and Tuning Guide for SQL Server

Making a direct connection
Whether or not you have an ArcSDE service running or have installed the ArcSDE
software, you are ready to make a direct connection. Here’s what you must do:

1. Ensure that you have a valid installation of the Microsoft Data Access Components
(MDAC) on the client machine. To connect to an ArcSDE spatial database using an
ArcSDE 9 client, such as ArcIMS or ArcGIS, you should have the latest release of
MDAC installed on that client. Check msado15.dll in \program files\common
files\system\ado or download the component checker from
http://www.msdn.microsoft.com and search for Data Access Downloads.

2. Set the sdehome environment variable to the directory above the bin directory
holding the gsrvrsql90.dll; the sdesqlsvr90.dll; and the client libraries sg90.dll,
sde90.dll, and pe90.dll.

a. You can substitute SDEHOME with ARCHOME.

b. From an ArcGIS client, set neither and let the search default to:
HKEY_LOCAL_MACHINE\SOFTWARE\ESRI\CoreRuntime\InstallDir.

3. Change the service (aka instance) argument of your connection to
sde:sqlserver:<SQL server instance name>

a. Sde:sqlserver:GISData\data02

For example, to direct connect from ArcCatalog, where ArcGIS resides in c:\arcgis,
C:\arcgis\engine\bin contains gsrvrsql90.dll; sdesqlsvr90.dll; and the three client libs,
sg90.dll, pe90.dll, and sde90.dll, do one of the following:

1. Set SDEHOME to c:\arcgis\engine and connect.

2. Clear SDEHOME, set ARCHOME to c:\arcgis\engine and connect.

3. Clear SDEHOME and ARCHOME, and let the ArcGIS client find the path from the
registry under HKEY_LOCAL_MACHINE\SOFTWARE\ESRI\CoreRuntime\
InstallDir.

Now Connect:
- Server name = ArcSDE Server
- Instance = sde:sqlserver:<SQL Server Instance Name>
- Database = database name (required parameter)
- User = any valid DBMS/ArcSDE user
- Password = any valid DBMS/ArcSDE user’s password

Chapter 5—Connecting to SQL Server 69

Change the service parameter to direct connect from ArcCatalog:

ArcObjects could connect with this:

Dim pPropSet as iPropertySet
Dim pWorkspaceFactory as iWorkspaceFactory
Dim pWorkspace as iWorkspace

set pPropSet = new PropertySet
set pWorkspaceFactory = new SDEWorkspaceFactory
with pPropSet
 .setProperty "Server" = "GISData"
 .setProperty "Instance" = "sde:sqlserver:GISData"
 .setProperty "Database" = "fisheries"
 .setProperty "User" = "Eric"
 .setProperty "Password"="sea.floor"
 .setProperty "version" = "sde.DEFAULT"
end with
set pWorkspace=pWorkspaceFactory.Open(pPropSet)
if pWorkspace is nothing then
 msgbox "Connection Failed"
else
 msgbox "Success"
end if

70 ArcSDE Configuration and Tuning Guide for SQL Server

Connecting from ArcIMS

The ArcIMS spatial server can use ArcSDE direct connect. However, you must author
your ArcXML file first using an ArcSDE application server connection, then edit the file,
adding in the sde direct connection string. Here’s how:

1. Use ArcExplorer—Java/ArcIMS author to connect to an ArcSDE application server
(traditional 3-tier service via TCP/IP).

2. Create your AXL.

3. Edit your AXL:

a. Open the AXL in notepad or any other text editor.

b. Locate the SDEWORKSPACE tag.

i. Change the instance attribute from

1. port:number (i.e., port:9000)

2. to sde:sqlserver:<sql instance name> (i.e., sde:sqlserver:
GISData)

ii. Make sure you reference a database name in the tag: database=“fisheries”

c. Save the AXL.

4. Create the service in ArcIMS.

For example:

Change

<SDEWORKSPACE name="sde_ws-0" server="GISData" instance="port:9000"
database="fisheries" user="Eric" encrypted="true" password="UIUX"
geoindexdir="C:\DOCUME~1\eric\LOCALS~1\Temp\" />

To

<SDEWORKSPACE name="sde_ws-0" server="GISData"
instance="sde:sqlserver:GISData" database="fisheries" user="Eric"
encrypted="true" password="UIUX"
geoindexdir="C:\DOCUME~1\eric\LOCALS~1\Temp\" />

C H A P T E R 6

National language support

Storing data in an ArcSDE SQL Server database using collation sets other

than the SQL Server default, Latin1_General, requires some extra

configuration on both the client and the server. This section provides

guidelines for configuring both the SQL Server database and the ArcSDE

client environment to enable the use of collation sets other than

Latin1_General.

SQL Server database collation designator
The default collation designator for SQL Server 2000 databases is Latin1_General. The
collation is selected when SQL Server 2000 is installed but can be changed later by
running the rebuildm.exe utility. This utility is documented in the SQL Server Books
Online. Running it will remove any existing databases. SQL Server 2000 also supports
different collations set at the database level. This enables a single SQL Server to have a
default collation with numerous databases, each set to a different collation.

The default collation will support U.S. English and most Western European languages.
Change this default only if you are not using a language from this group. Consult the
SQL Server Books Online to determine the collation designator that is appropriate for
your data. Also, select how data will be sorted. Sort order can be binary, case sensitive,
accent sensitive, kana sensitive, or width sensitive. If the binary option is not selected,
SQL Server 2000 follows sorting and comparison rules as defined in dictionaries for the
associated language or alphabet. It is also possible to choose an alternative collation if
backward compatibility with previous installations of SQL Server 7 or earlier is desired.
The choice depends on the collation choice made in the earlier instance of SQL Server. If
the previous installation accepted the defaults, select Dictionary Order, Case Insensitive.
This is backward compatible with the 1,252 character set, which was the default in SQL
Server 6.5 and SQL Server 7.

72 ArcSDE Configuration and Tuning Guide for SQL Server

NOTE: ArcSDE reads collation from each spatial database. If you use the older
multidatabase model (in other words, you have multiple spatial databases with an sde
database as repository), collation is read from the master database.

Setting the SDE_SQLCHARSET variable for Windows clients
If you want to load data into or retrieve data from an ArcSDE spatial database using non-
ArcGIS clients, and those clients are configured to different character encoding standards
or code pages, you may have to set the SDE_SQLCHARSET environment variable.

For instance, an ArcSDE SQL Server spatial database using the Shift JIS character
encoding for Japanese characters would require that command line tools such as
sdeimport or shp2sde run from an environment set to the same encoding (Shift JIS). If
that client is not set to the same encoding, you must set the SDE_SQLCHARSET
variable to be able to send and receive character data to and from the ArcSDE Server. For
a C API or ArcSDE command utility application, the SDE_SQLCHARSET must be set
as a system environment variable.

set SDE_SQLCHARSET=eucjis

For Java API client applications, set the SDE_SQLCHARSET as a Java Virtual Machine
(JVM) system property.

java –DSDE_SQLCHARSET=eucjis [Java client program]

Exercise care in setting SDE_SQLCHARSET on Windows. In Windows, there are two
different code page environments, Windows ANSI and Original Equipment
Manufacturer (OEM). Windows applications such as ArcInfo and ArcView run in the
ANSI code page environment. ArcSDE administration tools and C API applications
invoked from the MS–DOS command prompt run in the OEM code page environment. If
you use both Windows applications and MS–DOS applications together, then set the
SDE_SQLCHARSET variable for MS–DOS applications by opening the MS–DOS
command prompt and issuing an MS–DOS SET command. Initially verify that the data
to be loaded is in either ANSI or OEM format.

If the ArcSDE Windows client, using Baltic language as the local language, is running
from Windows, set the code page to cp1257.

Also, ArcSDE—Java API client-based applications run from the DOS command window
require the setting of the file.encoding Java System property, if the DOS OEM
file.encoding property is different from the file.encoding used by applications run in the
Windows environment. Consider for example, that the Windows client machine is set up
in the French Locale (cp1252) and that the SQL Server database contains French data,
created using code page 1252. The OEM code page required to read this data is cp850.
To read and display all French data, the file.encoding Java System property must be set at
the DOS command prompt as shown below:

java -Dfile.encoding=CP850 -DSDE_SQLCHARSET=CP850 <Java program name>
set SDE_SQLCHARSET=cp1257

Chapter 6—National language support 73

If the client is running from the MS–DOS prompt, set the code page to cp775, which is
the OEM code page for Baltic language.

set SDE_SQLCHARSET=cp775

If the ArcSDE client is running from a UNIX platform, set the code page to iso_13

set SDE_SQLCHARSET iso_13

Note that there should not be any blank spaces at the end of the command.

Character encoding standards supported by ArcSDE
Currently ArcSDE only supports conversions between the character encoding standards
listed in the following list.

Character encoding Description

big5 BIG5 16-bit Traditional Chinese

Euccns EUC 32-bit Traditional Chinese

eucgb CGB2312-80 16-bit Simplified Chinese ZHS16CGB231280

sjis Shift-JIS 16-bit Japanese

eucjis EUC 24-bit Japanese

eucksc KSC5601 16-bit Korean

iso_1 ISO 8859-1 West European

iso_2 ISO 8859-2 East European

iso_3 ISO 8859-3 South European

iso_4 ISO 8859-4 North and North–East European

iso_5 ISO 8859-5 Latin/Cyrillic

iso_6 ISO 8859-6 Latin/Arabic

iso_7 ISO 8859-7 Latin/Greek

iso_8 ISO 8859-8 Latin/Hebrew

iso_9 ISO 8859-9 West European and Turkish

Iso_10 ISO 8859-10 North European

iso_13 ISO 8859-13 Baltic

Iso_15 ISO 8859-15 West European

cp437 IBM-PC Code Page 437 8-bit American

cp850 IBM-PC Code Page 850 8-bit West European

cp851 IBM-PC Code Page 851 8-bit Greek/Latin

74 ArcSDE Configuration and Tuning Guide for SQL Server

cp852 IBM-PC Code Page 852 8-bit East European

cp855 IBM-PC Code Page 855 8-bit Latin/Cyrillic

cp857 IBM-PC Code Page 857 8-bit Turkish

cp860 IBM-PC Code Page 860 8-bit West European

cp861 IBM-PC Code Page 861 8-bit Icelandic

cp862 IBM-PC Code Page 862 Hebrew

cp863 IBM-PC Code Page 863 8-bit Canadian French

cp864 IBM-PC Code Page Arabic

cp865 IBM-PC Code Page 865 8-bit Norwegian

cp866 IBM-PC Code Page 866 8-bit Latin/Cyrillic

cp869 IBM-PC Code Page 869 8-bit Greek/Latin

cp720 Arabic Transparent ASMO

cp737 IBM-PC Code Page 737 8-bit Greek/Latin

cp775 IBM-PC Code Page 775 8-bit Baltic

cp1250 MS Windows Code Page 1250 8-bit East European

cp1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic

cp1252 MS Windows Code Page 1252 8-bit West European

cp1253 MS Windows Code Page 1253 8-bit Latin/Greek

cp1254 MS Windows Code Page 1254 8-bit Turkish

cp1255 MS Windows Code Page 1255 8-bit Latin/Hebrew

cp1256 MS Windows Code Page 1256 8-Bit Latin/Arabic

cp1257 MS Windows Code Page 1257 8-bit Baltic

cp1258 MS Windows Code Page 1258 8-bit Vietnamese

C H A P T E R 7

Backup and recovery

Backup and restore are critical functionality to understand and implement

for the security of your data. Microsoft SQL Server offers multiple

backup strategies and restoration types. ArcSDE 9 single spatial databases

can be backed up and restored in the same manner as any nonspatial

database.

Understanding backup and restore
Backup and restore are designed to minimize exposure to data loss and database
downtime. A backup is a full or partial record of data or changes within a database or
transaction log. Data restoration is the process of applying backups followed by database
recovery. Once a database has recovered, you can no longer restore backups, unless you
begin the process over. Data loss potential is governed by a database’s recovery model
and backup frequency. Database downtime is mitigated by the number and size of
backups that are restored to SQL Server.

Understanding recovery models
Recovery models dictate how the transaction log is used and a database’s exposure to
data loss. There are three models: full, bulk-logged, and simple. Recovery model is a
database setting, changed either through the Enterprise Manager or the alter database
statement. For example:

Alter database gis_data set recovery bulk_logged

Full recovery model

Full recovery allows point in time (or point of failure) recovery, provided you have the
transaction log backups at that point in time. Point in time recovery signifies the ability to

76 ArcSDE Configuration and Tuning Guide for SQL Server

recover a database to a specific time, restoring all committed transactions and rolling
back all incomplete transactions.

To support this type of restore, all operations are logged to the SQL Server transaction
log. As the SQL Server transaction log becomes critical for data restoration, it must be
backed up regularly. Since all operations are fully logged, the transaction log is active and
will grow. You control this growth through transaction log backups.

Production SQL Servers that must have point-in-time recovery should use the full
recovery model for their databases. Such databases should follow this general backup
strategy:

• Make periodic full database backups.

• Make more frequent differential database backups.

• Back up the transaction log several times between differential and full database
backups.

Recovery to a point of failure or point in time involves:

• Backing up the currently active transaction log

• Restoring the most recent full database backup without recovery

• Restoring the most recent differential database backup without recovery

• Restoring in sequence any transaction log backups without recovery

• Restoring the last transaction log backup with recovery

Bulk-logged recovery model

Databases using the bulk-logged recovery model minimally log bulk operations to the
Microsoft SQL Server transaction log. These operations include CREATE INDEX,
SELECT … INTO, writetext, updatetext, and BULK INSERT. The transaction log does
not record sufficient information to recover these changes if media failure occurs after a
bulk operation. You can recover a database to the point of failure, but your data may not
be consistent if it was changed by a bulk operation. The process of restoration is the same
as in full database recovery.

ArcSDE 9 log files are populated using BULK INSERT statements. Set your recovery
model to bulk-logged to minimize logging of inserts into log files if your work flow
performs extensive selections.

Simple recovery model

Simple recovery model does not use the transaction log for recovery. You can only
restore full database backups if you use the simple recovery model. The advantage to
using the simple recovery model is that there is less transaction log management. SQL
Server will begin to manage the truncation of the transaction log after you perform your
first full database backup. After this, if the log fills to 70 percent, or a database
checkpoint occurs (upon alter database, for example), SQL Server will attempt to

Chapter 7—Backup and recovery 77

truncate the transaction log. Space for new transactions becomes available as log
truncation clears out transactions that precede the oldest active transaction and reside in
an earlier virtual log. Use the backup log statement to manually truncate the log:

Backup log spatial with truncate_only

Understanding backup types
You back up data, changes, or transaction logs. The difference between the three depends
on how much you are willing to lose in the event of system failure. Database, file group,
and file backups back up the entire entity. Differential backups back up only changes
made to the data since the last full database, file group, or file backup. Transaction log
backups back up only the transaction log.

Database, file group, and file backups

Database, file group, and file backups are full copies of that entity. They are the
foundation for any backup and restore strategies.

Differential database, file group, and file backups

Differential backups record changes made to a database, file group, or file since the last
full database backup. Changes are identified through the differential changed map, which
represents all changed extents in a database. If an extent’s value is 1 within the map, that
extent is backed up. During the next full backup, any changed values within the map are
set back to 0.

Transaction log backups

Transaction log backups back up the transaction log and control the log’s size.
Transaction log backups are only useful in full or bulk-logged recovery models.

During a transaction log backup, the entire log is first backed up. All committed or rolled
back transactions that precede the oldest active transaction (MinLSN) and reside in a
previous virtual log are truncated from the transaction log. This controls the size and
growth of the transaction log. In simple recovery model, in which the transaction log
cannot be used for recovery, backup is used to truncate the log.

Backing up ArcSDE spatial databases
ArcSDE single spatial databases can be backed up and recovered as any other SQL
Server database. If you have deployed a multidatabase sde instance (one sde database
holds metadata for all spatial databases) the process becomes more complex. In this
configuration, all spatial databases depend on the sde database, so you must back up all
databases as one. The following sections detail how you should plan for backup and
recovery of your ArcSDE single spatial databases.

78 ArcSDE Configuration and Tuning Guide for SQL Server

Deciding on a recovery model
Review the sections above and the SQL Server Books Online, topic “Administering SQL
Server—Backing Up and Restoring Databases” and choose a recovery model for your
spatial database.

If your data will never change or changes sporadically through batch imports (sdeimport,
and so forth), choose simple recovery.

If you can tolerate some data loss exposure, index creation for example, choose bulk-
logged recovery. The advantage to using bulk-logged recovery is that selections into the
ArcSDE log files are minimally logged. Both ArcGIS and ArcIMS use sde log files to
persist selected features. If your work flow includes large selections, consider setting your
database recovery model to bulk-logged.

If you must have point-of-failure or point-in-time recovery use the full recovery model.

Once you’ve made your choice, set your recovery model in your spatial database. From
Query Analyzer:

-- for bulk logged recovery model:
Alter database spatial set recovery bulk_logged
-- for full recovery model:
alter database spatial set recovery full
-- for simple recovery model:
alter database spatial set recovery simple

Designing a restoration strategy
In the event of a catastrophic system failure, you may have to restore some or all of your
databases. To facilitate this, design a restoration plan, then practice restoring your
databases.

Creating a restoration plan

Create a document that details:

• All SQL Server installations, their patch levels, OS service packs, server names,
database names, collations.

• For each SQL Server, document what databases are backed up, their recovery
models, and their backup schedules. Include explanations for the recovery model
and backup schedule.

• Document who performs the backups and who can serve as a point of contact for
backup and restore questions.

• Decide and document where the backups will be stored. Also consider how long to
retain backup media.

• Create a backup schedule.

Your restoration plan is useless unless you practice it. Make sure that you test your
backups and your restoration plan before real problems occur.

Chapter 7—Backup and recovery 79

Creating a backup schedule
Automate your backups using the SQL Server Enterprise Manager. Backups can be
automated through SQL Server jobs or the SQL Server maintenance wizard.

If your database is set to simple recovery model, your data either does not change or
changes infrequently. Therefore, you only need to backup your database after a change or
once after you’ve built your data.

If your database is set to bulk-logged or full recovery modes, you’ll have to make more
frequent and varied types of backups. For data that changes on a daily basis, follow this
general outline:

• Make a full database backup at the beginning of your production day.

• Make a differential database backup at the midpoint of your production day.

• Make periodic transaction log backups between your differential and full database
backups.

Customize this outline to fit your organization’s needs. This outline presumes your data
changes rapidly throughout the day. If your data does not, change the timing of your
backups to accommodate your change rate.

Creating a backup schedule with the SQL Server Enterprise Manager

The SQL Server Enterprise Manager has several ways of automating backups. The
easiest method is to use the database maintenance wizard. The following example
demonstrates how to use this wizard to create a schedule for a full database and
transaction log backup.

1. Start the database maintenance wizard: Right-click your database in Enterprise
Manager, select all tasks, then click Maintenance Plan.

2. In the Select Databases form, verify that your database is checked.

3. Click Next until you arrive at Specify the Database Backup Plan.

80 ArcSDE Configuration and Tuning Guide for SQL Server

4. Change the schedule to whenever you want your full database backups to occur. In
this example, the database will be backed up every day at 4 a.m. (4:00).

5. Click Next to proceed to the Specify Backup Disk Directory form. Use this form to
specify where to place your backup files and how long to keep them.

6. Click Next to advance to the Specify the Transaction Log Backup Plan form. Use
this form to schedule your transaction log backups.

Chapter 7—Backup and recovery 81

7. In this example, the transaction log is backed up daily every 4 hours between 9 a.m.
(9:00) and 7 p.m. (19:00).

8. Click Next to advance to the Specify Transaction Log Backup Disk Directory form.
In this form, specify where to store your transaction log backups and how long to
keep them.

9. Click Next through the remaining forms to specify reports and history. Finish the
wizard to create your backup schedule.

Further references
SQL Server Books Online under “Administering SQL Server—Backing Up and
Restoring Databases”.

Restoring and recovering ArcSDE spatial databases
The goal of data recovery or database restoration is logical consistency of data. Logical
consistency refers to the state of a database in which changes made by uncommitted
transactions are not permanently written to disk. If a transaction is rolled back, any
changes written to disk are also undone.

Disaster strikes!
Disk failures happen, servers malfunction, data loss occurs. Sooner or later, you will be
confronted with a catastrophic failure from which you’ll have to recover. If you use the
simple recovery model, all you have to do is review your data restoration strategy and
restore your most recent full database backup. If you use either the full database or bulk-
logged recovery model, you’ll have to review your restoration strategy and perform
manual recovery.

Manual database recovery
Manual recovery involves the restoration of database backups to a SQL Server. When the
last backup is applied, either full, differential, or transaction log backup, the database is
allowed to “recover”—the process of rolling back uncommitted transactions and rolling
forward committed transactions. Once a database has recovered, no further backups can
be applied.

Restoring a spatial database
When a disk or server failure occurs, data may be lost. If data is lost, you must restore
database backups and recover the database. Restoring an ArcSDE single spatial database
is no different from restoring any other database. That process involves:

1. Determining a restoration sequence

2. Restoring the most recent full database backup

82 ArcSDE Configuration and Tuning Guide for SQL Server

3. Restoring the most recent differential database backup

4. Restoring, in sequence, all transaction log backups since the most recent full or
differential database backup

5. After restoring the last transaction log backup, allowing the database to recover

NOTE: You cannot change the name of the spatial database during your restore. You
must use the same name the database had during its backup.

If your spatial database uses simple recovery model, points 3–5 above are not applicable.

Restoring a spatial database using Enterprise Manager

Backup and restore history are stored in the msdb database. If you will use Enterprise
Manager to restore your database, and you have not lost the msdb database, Enterprise
Manager will prompt you with all necessary information and proper sequence of
restorations. To begin a restore, right-click the database in question, select all tasks,
Restore database. You’ll see a form like the one shown below:

Click OK to begin restore. Enterprise Manager will restore all backups in their proper
sequence and recover the database after the last transaction log backup is applied. Once
completed, your database is fully restored and recovered.

Chapter 7—Backup and recovery 83

Restoring a spatial database using Transact-SQL

Using Transact-SQL to restore your database is more involved. To determine your
restoration sequence, you’ll have to read the backup device (Montgomery.bak) to
determine its content. In this example, the Montback.bak file is read to determine what it
contains, then a proper restoration sequence can be determined. Use the restore
headeronly command to determine what a backup device contains:

restore headeronly from disk='f:\target\Montback.bak'

This returns the following result set:

From the BackupType column, you know that Row 1 represents a full database backup,
Row 2 a differential database backup, and Rows 3 and 4 are transaction log backups. You
also know the order in which these backups were taken by the Position column. Row 4 in
the result set, where Position = 4, was the last backup done. Your restore sequence will
be Positions 1, 2, 3, and 4.

First you’ll restore the most recent full database backup without letting the database
recover. Identify the full database backup by its value in the position column of the
RESTORE HEADERONLY statement. Use this value in the FILE= clause.

--most recent full db backup
restore database Montgomery from disk='f:\target\Montback.bak'
with file=1, norecovery

Next, restore the most recent differential database backup, again without letting the
database recover. The differential backup’s position from RESTORE HEADERONLY is
2, so you’ll identify this backup set with the FILE=2 clause.

--restore the most recent differential db backup
restore database Montgomery from disk='f:\target\Montback.bak'
with file=2, norecovery

Finally, restore, in sequence, all transaction logs taken between the most recent
differential database backup and the last transaction log backup. In this example, there are
two transaction logs, at Positions 3 and 4, from the RESTORE HEADERONLY result
set. Omit the “norecovery” clause from the final restore statement to allow the database to
recover.

/* restore all t-logs, in sequence, between last differential db
 * backup and most recent t-log backup */

restore log Montgomery from disk='f:\target\Montback.bak'
with file=3, norecovery

84 ArcSDE Configuration and Tuning Guide for SQL Server

--last t-log, leave off "norecovery" option to recover db
restore log Montgomery from disk='f:\target\Montback.bak'
with file=4

There are other ways of restoring a database and many other scenarios, including
multiple backup devices, media sets, and so forth. This document cannot cover them all.
Be sure to review other documentation, including the references listed above, before you
go into production.

Managing transaction logs
Transaction logs are composed of a physical log, virtual logs, and a logical log. The
physical log represents the transaction log file or log files on disk, while virtual logs are
internal segments of those files. The logical log contains the active portion of the
transaction log.

Transaction logs record transactions, data modifications, extent allocations and
deallocations, and creation or destruction of tables and indexes. This record allows you
to:

1. Roll back changes made within a transaction.

2. During recovery, roll back incomplete transactions initiated before a database
failure.

3. During recovery, roll forward modifications listed in the log but not yet written to
disk.

Each record written to the log has a Log Sequence Number (LSN). All new records are
written to the end of the log and have a higher LSN than their predecessors. The logical
log will grow until it consumes all open space in the physical log. This will cause the
physical log to autogrow if allowed or throw an error. If the database uses the simple
recovery model, the logical log will truncate itself when automatic checkpoints occur. If
the database uses the full or bulk-logged recovery model, log truncation will occur after a
BACKUP LOG statement completes.

The logical log cannot truncate itself past the Minimum Log Sequence Number
(MinLSN), the oldest uncommitted transaction recorded.

Transaction logs are used to recover a database in the full or bulk-logged recovery
models. The simple recovery model only allows restoration of a database to its last full
backup. If you require point-in-time recovery of your data, use the full recovery model
for your database. If your data will never change, use the simple recovery model. The
bulk-logged recovery model performs minimal logging of certain operations and does not
support point-in-time recovery.

If you have never made a backup of your database, you’ll notice that your transaction
logs have grown to a considerable size. Transaction logs in ArcSDE will grow due to
data loading, editing, and making selections into sde log files. When you make selections
with ArcGIS clients, such as ArcMap and ArcIMS, all selections exceeding 100 records
are written into an sde log file.

Chapter 7—Backup and recovery 85

Sde log files are database tables used to store selected features for use in other selection
operations. Many other operations, such as reconcile from ArcGIS or metadata server
searches, use sde log files. Rows written to an sde log file use the BULK INSERT
statement, which makes them minimally logged in the transaction log if your database is
set to the bulk-logged recovery model. If your database uses either the full or simple
recovery modes, SQL Server logs more information for each BULK INSERT statement.

Sde log files incur deletes when clearing a selected set from the client software. The
delete will either be a truncate table or delete from statement. Either way, the continuous
inserting and deleting from these tables will make the database transaction log grow.

Backing up your database and log file should control the size of the log by truncating it. If
you have not made regular backups of the transaction log, you’ll need to take action to
reduce its size. To reduce the amount of space used within the physical log file by the
logical log, truncate it. To reduce the overall size of the physical log file, shrink it.

Truncating transaction logs
Truncating a log removes committed or rolled back transactions that precede the
MinLSN of the active portion of the logical log. Truncating the log will not shrink the
size of the physical log.

To truncate your log do one of the following:

1. Back up the database using either Enterprise Manager or the Backup statement.

2. Back up the log file using Enterprise Manager or the Backup statement.

3. Use the simple recovery model. This model will automatically truncate your
database whenever a checkpoint occurs or when the log fills to 70 percent.

Once you’ve issued the Backup statement, all records preceding the MinLSN are marked
for reuse, and the reported size of the transaction log’s logical log is smaller. The
following figures demonstrate this.

A transaction log after multiversioning some large feature classes

86 ArcSDE Configuration and Tuning Guide for SQL Server

The same log after a database backup. The log has been truncated.

Shrinking the transaction log
Truncating the log removes all nonactive transactions but does not reclaim any space,
only delaying any more growth to the physical log file. In the lower case shown above,
the physical log file still consumes 315.8 MB even though only 11.4 MB are active. You
may find that you need some of this extra space. Shrinking the transaction log will return
allocated space to the operating system.

To shrink the transaction log, do one of the following:

1. Use the Enterprise Manager’s Shrink database utility: Right-click your database and
select all tasks, Shrink Database. Input your desired resulting free space and click
OK.

2. Use DBCC SHRINKDATABASE.

In the figure below, the Enterprise Manager was used to shrink the log file to 49.7 MB.

The log file’s new size after shrinking it

Help! It won’t shrink!
Under certain circumstances, you will not be able to shrink the size of the log file. As the
logical log progresses through serial lists of Log Sequence Numbers, the active portion of
the log will arrive at the end of the physical file. You cannot return space preceding the
MinLSN to the operating system. You must advance the MinLSN to the beginning of the
physical file. Here’s how:

1. Back up the database. This will mark the preceding records to the minimum log
sequence as reusable. Check the size of the log file.

2. Execute some updates using Transact-SQL. This should move the active portion of
the log toward the beginning of the physical file.

3. Execute dbcc shrinkdatabase (dbname) to create a “shrinkpoint”.

Chapter 7—Backup and recovery 87

4. Back up the log file.

At this point you should see more free space in the log file. Repeat a few times if
necessary.

Moving data using backup and restore
This section assumes you are going to backup an ArcSDE database and apply that
backup to another server that does not have a preexisting ArcSDE installation.

1. Back up the spatial database you wish to apply to another server.

2. Copy the backup file or files to the new server.

3. Restore the backup file or files to the new server.

4. Run sp_change_users_login to synchronize the sysuser’s table in each newly
restored database with the master database’s sysxlogins table.

NOTE: You cannot change the name of the database during restore. You must use the
original database name.

1. Backup the spatial database
Use either Transact-SQL’s BACKUP command or Enterprise Manager’s backup utility
to back up the spatial database you want to move. In this example, you’ll use Transact-
SQL to back up the database “Montgomery”.

backup database Montgomery to disk='g:\Montback.bak'

2. Copy the backup file or files to the new server
In the example above, the backup file is located on the g: drive. Copy the backup file to
the new server.

3. Restore the backup file or files to the new server
Using the restore command, you will restore the database on the new server and change
its data file locations. The backup file (Montback.bak) has been copied to f:\target folder
on the new server. When you restore the database, you want to store the data file in the
f:\sdedata folder and the transaction log in the H:\transactionlogs folder. This means you
must instruct SQL Server to move the data file and transaction log. To do this, you have
to know the logical filenames within the backup file.

To determine the logical filenames within the backup file, execute RESTORE
FILELISTONLY from the Query Analyzer on the new server:

restore filelistonly from disk = 'f:\target\Montback.bak'

This returns a result set that lists the logical filenames:

88 ArcSDE Configuration and Tuning Guide for SQL Server

Using LogicalName from the above result set, execute the RESTORE DATABASE
command with the MOVE option to restore the database:

RESTORE DATABASE Montgomery
 from disk = 'f:\target\Montback.baK'
 with MOVE
 'Montgomery_Data' to 'f:\sdedata\Montgomery_Data.mdf',
 MOVE
 'Montgomery_log' to 'H:\transactionlogs\Montgomery_log.ldf'

Once the restore finishes, open the database in Enterprise Manager and verify that your
tables are there. Now you must synchronize the database users with their logins located in
master.dbo.sysxlogins.

4. Run sp_change_users_login
When you restore a database from a backup created on another machine, there is a chance
that a database user’s identification number (either an SID or a GUID) does not match
the same entry in the master.dbo.sysxlogins table. There is also a chance that the database
user does not exist in the master.dbo.sysxlogins table. Since a restore also restores a
database’s sysusers table, it is possible for a record to exist here but not be present in
master.dbo.sysxlogins. Hence, there are two scenarios you need to consider:

• The user exists as a login on the server but has a different identification (SID or
GUID).

• The user does not exist (added as a login) on the server.

This does not apply to Windows authenticated logins.

Scenario 1: The user exists on both servers but has a different identifier.

In this example, both servers have a login “sde”. After you restore the spatial database to
the new server, the sde user’s SID differs in the spatial database from the sde login’s SID
in the master.dbo.sysxlogins table.

Use Montgomery
go
Select SID from sysusers where name = 'sde'
Use master
go
select SID from sysxlogins where name = 'sde'

SID

0x76695419BFAED41184FD00C04F8D0451

(1 row(s) affected)

SID

0xEDDFCA8E56B0D411850000C04F8D0451

(1 row(s) affected)

Chapter 7—Backup and recovery 89

To synchronize the two accounts, run sp_change_users_login. For exact usage, see the
SQL Server Books Online. In this example, you’ll use the “update_one” option to update
just the sde user. You must run sp_change_users_login within the database you restored
(or want to change the login for).

Use Montgomery
go
sp_change_users_login 'update_one','sde','sde'

Rerun the SID query above to verify your results:

0xEDDFCA8E56B0D411850000C04F8D0451
0xEDDFCA8E56B0D411850000C04F8D0451

Scenario 2: The user does not exist on the destination (restore) server.

This scenario differs from the first one in that a user exists in the database but not as a
login in the master.dbo.sysxlogins table. This can happen when you create a login on a
server, back up the databases on that server, then restore the databases to another server
that does not have a record for this login. In this example, the spatial database is restored
onto a machine that never had an “sde” login.

Use Montgomery
go
Select SID from sysusers where name = 'sde'
Use master
go
select SID from sysxlogins where name = 'sde'

SID

0x76695419BFAED41184FD00C04F8D0451

(1 row(s) affected)

SID

(0 row(s) affected)

To rectify this, you must add an sde login to the server but not grant access to the spatial
database. To add a login, use the sp_addlogin stored procedure or use the logins tool with
Enterprise Manager:

sp_addlogin @loginame='sde',@passwd='sde.password'

Now run sp_change_users_login to synchronize the SID values in master.dbo.sysxlogins
and the restored database’s sysusers table. You must run sp_change_users_login in the
spatial database since its sysusers table is out of sync with the master.dbo.sysxlogins
table.

use Montgomery
go
sp_change_users_login 'update_one','sde','sde'

Now verify that the SIDs are equal by rerunning your SID query.

Use Montgomery

90 ArcSDE Configuration and Tuning Guide for SQL Server

Go
Select SID from sysusers where name = 'sde'
Use master
Go
select SID from sysxlogins where name = 'sde'
SID

0xF6DFCA8E56B0D411850000C04F8D0451

(1 row(s) affected)

SID

0xF6DFCA8E56B0D411850000C04F8D0451

(1 row(s) affected)

Once you’ve synchronized the users, you are ready to start the ArcSDE service.

Moving data using sp_detach_db and sp_attach_db
You can also move databases using the SQL Server stored procedures sp_detach_db and
sp_attach_db. A detached database can be one file or several files, depending on how you
created the database. The procedure is similar to the backup and restore examples, but
differs in that you don’t have a backup file of your database. Be careful! Once you attach
your database, you don’t have a copy of it, so if you delete it, you’ll lose your data.

To move your database with sp_detach_db and sp_attach_db:

1. Detach your database from one server.

2. Copy the data files and transaction log files to the target server and reattach the
database there with sp_attach_db.

3. Run sp_change_users_login to synchronize the sysuser’s table in each newly
restored database with the master database’s sysxlogins table (SQL Server logins
only).

1. Detach the database
Read the SQL Server Books Online for a complete discussion of sp_detach_db. When
you detach the database, you can unhook it from SQL Server without having to shut
down SQL Server. For example:

use master
sp_detach_db 'Montgomery'
go

Chapter 7—Backup and recovery 91

2. Copy the database to another server and run sp_attach_db
The previously detached database will reside in its previous data folder. Copy it and its
log file to the target server. Then execute the procedure sp_attach_db to reattach the
database to the server:

sp_attach_db 'Montgomery',
@filename1='d:\SQL2K_DATAFILES\MSSQL\Data\Mont.mdf',
@filename2='d:\SQL2K_DATAFILES\MSSQL\Data\Montlog.ldf'

You must supply a pathname for the database files and log files.

3. Run sp_change_users_login to synchronize the sysuser’s
table
Follow the same procedure outlined above in step 4.

92 ArcSDE Configuration and Tuning Guide for SQL Server

A P P E N D I X A

ArcSDE compressed binary

This appendix describes the state of ArcSDE with no configuration

changes made to the server or any spatial databases. It also details how

the ArcSDE application manages your data with regard to indexes,

triggers, and specific SQL Server configuration settings. This appendix

will help you understand how to manage spatial data.

Compressed binary
After the client verifies the geometry, it compresses and sends it to the server, where it is
stored in compressed binary format in a feature table. Compressing the geometry on the
client unloads the task from the ArcSDE server and reduces the transmission time to send
the geometry to the ArcSDE server. Storing compressed geometry data reduces the space
required to store data by as much as 40 percent.

Compressed binary metadata tables
A compressed binary feature class comprises three tables: the business table, the feature
table, and the spatial index table.

The business table contains attributes and a spatial column. The spatial column is a key to
the feature and spatial index tables.

The relationship between the business table and the feature table is managed through the
spatial column and the FID column. This key, which is maintained by ArcSDE, is
unique.

NAME DATA TYPE Allow Nulls

fid INTEGER(4) NOT NULL

numofpts INTEGER(4) NOT NULL

entity SMALLINT(2) NOT NULL

94 ArcSDE Configuration and Tuning Guide for SQL Server

NAME DATA TYPE Allow Nulls

eminx FLOAT(8) NOT NULL

eminy FLOAT(8) NOT NULL

emaxx FLOAT(8) NOT NULL

emaxy FLOAT(8) NOT NULL

eminz FLOAT(8) NULL

emaxz FLOAT(8) NULL

min_measure FLOAT(8) NULL

max_measure FLOAT(8) NULL

area FLOAT(8) NOT NULL

len FLOAT(8) NOT NULL

points IMAGE NULL

anno_text VARCHAR(255) NULL

Feature table schema

The feature table stores the geometry, annotation, and CAD in the image type POINTS
column. The internal SQL Server data type is listed in the table above. The ArcSDE data
type for each column is defined below.

• fid (SE_INTEGER_TYPE)—contains the unique ID that joins the feature table to
the business table

• entity (SE_INTEGER_TYPE)—the type of geometric feature stored in the shape
column (for example, point, linestring)

• numofpts (SE_INTEGER_TYPE)—the number of points defining the shape

• eminx, eminy, emaxx, emaxy (SE_FLOAT_TYPE)—the envelope of the shape

• eminz (SE_FLOAT_TYPE)—the minimum z-value in the shape

• emaxz (SE_FLOAT_TYPE)—the maximum z-value in the shape

• min_measure (SE_FLOAT_TYPE)—the minimum measure value in the shape

• max_measure (SE_FLOAT_TYPE)—the maximum measure value in the shape

• area (SE_FLOAT_TYPE)—the area of the shape

• len (SE_FLOAT_TYPE)—the length or perimeter of the shape

• points (SE_SHAPE_TYPE)—contains the byte stream of point coordinates that
define the shape’s geometry

• anno_text (SE_STRING_TYPE)—contains the feature annotation string

NAME DATA TYPE Allow Null?

sp_fid INTEGER(4) NOT NULL

Gx INTEGER(4) NOT NULL

Appendix A—ArcSDE compressed binary 95

NAME DATA TYPE Allow Null?

Gy INTEGER(4) NOT NULL

Eminx INTEGER(4) NOT NULL

Eminy INTEGER(4) NOT NULL

Emaxx INTEGER(4) NOT NULL

Emaxy INTEGER(4) NOT NULL

Spatial index table schema

The spatial index table defines the grid range and extent of all geometry in an ArcSDE
feature class.

• sp_fid (SE_INTEGER_TYPE)—contains the unique ID that joins the feature table
to the business table

• gx/gy (SE_INTEGER_TYPE)—defines the feature’s extent in grid cells

• eminx/eminy/emaxx/emaxy (SE_INTEGER_TYPE)—defines the extent of the
feature in system units

In this example the FEATURE-ID column from the WELLS business table references
features from the feature and spatial index tables:

WELL_ID DEPTH ACTIVE FEATURE-ID
1 30029 Yes 101
2 13939 No 102
3 92891 No 103
… … …

FID AREA LEN EMINX,EMINY,… POINTS
101 <compressed feature>
102 <compressed feature>
103 <compressed feature>
… …

SP_FID GX GY {EMINX,EMINY,EMAXX,EMAXY}
101 70 100
102 70 100
103 71 100
…

A business/feature/spatial index key reference

96 ArcSDE Configuration and Tuning Guide for SQL Server

The spatial grid index
The spatial grid index is a two-dimensional index that spans a feature class, such as the
reference grid you might find on a common road map. You may assign the spatial grid
index one, two, or three grid levels, each with its own distinct cell size. The mandatory
first grid level has the smallest cell size. The optional second and third grid cell levels are
disabled by setting them to 0. If enabled, the second grid cell size must be three times
larger than the first grid cell size, and the third grid cell size must be three times larger
than the second grid cell size.

The spatial index table (S<feature class_id>) has seven integer columns that store the grid
cell values, feature envelopes, and corresponding feature IDs. Adding a feature to a
feature class adds one or more grid cells to the spatial index table. The number of records
added to the spatial index table depends on the number of grid cells the feature spans.

The spatial index table contains two indexes. One index is on the SP_FID column, which
contains the feature ID. The other is a clustered composite index that includes all of the
columns of the spatial index table. Since all of the columns of the spatial index table are
indexed, the values of the table are read from the leaf blocks of the index and not the
table data blocks. The result is less I/O and better performance. In addition, the spatial
index table is not accessed whenever the feature class is queried. Therefore, when
considering how to position the tables and indexes to reduce disk I/O contention, you
should be concerned about the positioning of the indexes of the spatial index table but not
the table itself.

Building the spatial index
Every time a feature class is added to a business table, a persistent spatial index is built
for it.

The ArcSDE server manages the spatial index throughout the life of the feature class. As
features are inserted, updated, or deleted, the spatial index is automatically updated.

A load-only mode disables spatial index management until loading is completed. This
boosts loading performance substantially and is imperative for bulk-loading efforts (no
queries are allowed in the load-only mode except native SQL-based queries).

Once loading has been completed, the spatial index is enabled by returning it to normal
I/O mode. The conversion from normal I/O mode to load-only I/O mode reconstructs the
spatial index.

Inserting, updating, or deleting a feature updates the spatial index when the feature class
is in normal I/O mode.

ArcSDE overlays the extent of each feature onto the lowest grid level to obtain the
number of grid cells. If the feature exceeds four cells, ArcSDE promotes the feature to the
next highest grid level, if you have defined one. ArcSDE will continue to promote the
feature until it fits within four cells or less or until the highest defined grid level is
reached. On the highest defined grid level, geometries can be indexed by more than four
grid cells.

Appendix A—ArcSDE compressed binary 97

ArcSDE adds the feature’s grid cells to the spatial index table with their corresponding
shape ID and feature envelope. The grid level is encoded with each grid cell.

In the following example, the feature class has two grid levels. Area shape 101 is located
in grid Cell 4 on Level 1. A record is added to the spatial index table because the feature
resides within four grid cells (in this case it is one). Area feature 102’s envelope is located
in Cells 1 through 8 on Level 1. Because the feature’s envelope resides in more than four
grid cells, the feature is promoted to Level 2, where its envelope fits within two grid cells.
Feature 102 is indexed at Level 2, and two records are added to the spatial index table.

1 2 3 4

5 6 7 8

102 101

Level 1

Level 2
1 2

Shape 101 is indexed on grid Level 1, while shape 102 is indexed on grid Level 2 where it is in only
two grid cells.

Spatial queries and the spatial index
Spatial queries, such as finding all the lakes within a state boundary, use the spatial index.
A spatial index is used unless the search order has been set to SE_ATTRIBUTE_FIRST
in the SE_stream_set_spatial_constraints function. When the search order is set to
SE_ATTRIBUTE_FIRST, ArcSDE ignores the spatial index, and the criteria of the
attribute where clause determines which records of the feature class the query returns.

Whenever the spatial index is used, the ArcSDE service generally uses the following
decision process when performing the query:

1. Define the envelope. The envelope could be defined directly by the application, such
as the extent defined by the ArcMap zoom in tool. Alternatively, the envelope may
be defined as the envelope of another feature.

2. Join the spatial index table with the feature table and return all features whose grid
cells intersect the envelope.

3. Join the feature table with the business table and apply the criteria of the attribute
where clause to further refine features returned.

98 ArcSDE Configuration and Tuning Guide for SQL Server

Grid cell size impacts the size of the spatial index table. Setting up the spatial index
means balancing the cell sizes—smaller cell sizes mean more cells per shape, which
requires more entries in the spatial index table.

Guidelines for tuning the spatial index
Because client applications and spatial data profiles vary from one system to another, no
single solution fits all. Experienced users of ArcSDE often experiment with the spatial
index, trying different cell sizes and different grid level configurations.

The sdelayer command has several operations that can help you optimize the spatial
index by changing the grid cell sizes and adding new grid levels with the alter operation.
The stats and si_stats operations profile your spatial data and current spatial index.

The following guidelines can help improve the performance of spatial queries.

• Consider how many grid levels are needed and remember that the ArcSDE server
scans the spatial index table once per grid level. Often a single grid level is the best
solution for a feature class, despite the notion of distributing geometries evenly
across many grid levels to minimize the spatial index entries.

• Use one grid level for pure point type feature class and consider making the cell
sizes large. Spatial queries generally process point geometries faster than other
geometry types.

• Monitor the spatial index. Tuning a spatial index is difficult if the data changes
frequently. Tuning depends on the structure of the spatial data. Periodically assess
the spatial index as your spatial data changes.

• Base the spatial index on the application. Match the spatial index grid cell sizes to
the extent of the application window. By doing so, the application is probably
viewing exact entries in the spatial index table. This helps to size the spatial index
table suitably and reduces the amount of processing, because fewer candidate feature
IDs must be evaluated against the feature table (see ‘Spatial queries and the spatial
index’ above).

• For unknown or variable application Windows, start by defining one grid level with
a cell size three times the average feature extent size. Query the feature table to
obtain the average feature size with the following SQL statement:

select (avg(emaxx - eminx) + avg(emaxy - eminy)) / 3
from f<N>;

(where <N> is the layer number of the feature class)

Such spatial index configuration minimizes the number of rows in a spatial index
table while maintaining the proficiency of the index because the majority of features
can be referenced by less than one or two grid cells.

• Design the feature class around spatial data categories such as type, geometry size,
and distribution. Sometimes a carefully designed feature class, using these
categories, can substantially boost the performance of spatial queries.

Appendix A—ArcSDE compressed binary 99

Displaying spatial index statistics
The sdelayer command’s spatial index statistics operation, si_stats, can help you
determine optimum spatial index grid sizes. Optimum grid cell sizes depend on the
spatial extent of all feature geometries, the variation in feature geometry spatial extent,
and the types of searches to be performed on the map feature class. Below is a sample
output generated by si_stats:

$ sdelayer -o si_stats -l victoria,parcels -u av -p mo -i sde81
ArcSDE 8.1 Wed Jan 17 22:43:09 PST 2000
Layer Administration Utility
--
Layer 1 Spatial Index Statistics:
Level 1, Grid Size 200
|---|
| Grid Records: 978341 |
| Feature Records: 627392 |
| Grids/Feature Ratio: 1.56 |
| Avg. Features per Grid: 18.26 |
| Max. Features per Grid: 166 |
% of Features Wholly Inside 1 Grid: 59.71
Spatial Index Record Count By Group
Grids: <=4 >4 >10 >25 >50 >100 >250 >500
---------- ------ --- ---- ---- ---- ----- ----- -----
Shapes: 627392 0 0 0 0 0 0 0
% Total: 100% 0% 0% 0% 0% 0% 0% 0%

Level 2, Grid Size 1600 (Meters)

Grid Records: 70532
Feature Records: 36434
Grids/Feature Ratio: 1.94
Avg. Features per Grid: 18.21
Max. Features per Grid: 82
% of Features Wholly Inside 1 Grid: 45.35

Spatial Index Record Count By Group
Grids: <=4 >4 >10 >25 >50 >100 >250 >500
---------- ------ --- ---- ---- ---- ----- ----- -----
Shapes: 35682 752 87 17 3 0 0 0
% Total: 97% 2% 0% 0% 0% 0% 0% 0%

As the output shows, for each defined spatial index level the following values and
statistics are printed:

• Grid level and cell size.

• Total spatial index records for the current grid level.

• Total geometries stored for the current grid level.

• Ratio of spatial index records per geometry.

100 ArcSDE Configuration and Tuning Guide for SQL Server

• Geometry counts and percentages by group that indicate how geometries are
grouped within the spatial index at this grid level. The column headings have the
following meaning (where “N” is the number of grid cells):

<=N Number of geometries and percentage of total geometries that fall within <=
N grid cells

>N Number of geometries and percentage of total geometries that fall within > N
grid cells

Notice that the “>“ groupings include count values from the next group. For instance, the
“>4” group count represents the number of geometries that require more than four grid
records as well as more than 10, and so on.

• Average number of geometries per grid.

• Maximum number of geometries per grid. This is the maximum number of
geometries indexed into a single grid.

• Percentage of geometries wholly inside one grid. This is the percentage of all
geometries wholly contained by one grid record.

The output sample shows spatial index statistics for a map feature class that uses two grid
levels: one that specifies a grid size of 200 meters, the other a grid size of 1,600 meters.
When a geometry requires more than four spatial index records, it is automatically
promoted to the next grid level if one is defined. That is, in no case will a geometry
generate more than four grid records if more than one grid level exists. If a higher grid
level doesn’t exist, then a geometry can have more than four grid records.

In the example above, 627,392 features are indexed through Grid Level 1. Because the
system automatically promotes geometries that need more than four spatial index records
to the next defined grid level, all 627,392 geometries for Grid Level 1 are indexed with
four grid records or less. Grid Level 2 is the last defined grid level, so geometries indexed
at this level are allowed to be indexed with more than four grid records. At Grid Level 2,
there are a total of 36,434 geometries and 70,532 spatial index records;
35,682 geometries are indexed with four grid records or fewer, 752 geometries with more
than four grid records, 87 geometries with more than 10, 17 geometries with more than
25, and three geometries with more than 50 grid records. Percentage values below each
column show how the geometries are dispersed through the eight groups.

Indexes
Every data table in ArcSDE for Microsoft SQL Server has a clustered index. The
clustered key in an ArcSDE table is almost always the join key in a query such as the
business table’s spatial column or the f table’s FID column. The SQL Server query
processor favors clustered indices because a clustered index orders the table data at its
leaf level based on the index key. A normal index would have a pointer to the data page.
Clustered indices are b-tree structures containing pages with index rows holding a key
value and a pointer to either a data page or a lower-level index page. All searches begin at
the top level of the b-tree, the root node. This page is found in the sysindexes table in the

Appendix A—ArcSDE compressed binary 101

root field. Within this page are pointers to intermediate pages, themselves holding ranges
of values and pointers to other pages.

B-tree diagram of a clustered index

Here’s an example of the contents of the root node (shortened for brevity’s sake). The
Page Header displays 0:0 for both m_nextPage and m_prevPage, indicating that it is a
root node. Also, two data slots are displayed, each with a key value and a pointer to
another page. The pages pointed to are intermediate pages, themselves containing more
key values and pointers.

PAGE HEADER:

Page @0x19A8A000

m_pageId = (1:4713) m_headerVersion = 1 m_type = 2
m_typeFlagBits = 0x0 m_level = 0 m_flagBits = 0x0
m_objId = 1526296497 m_indexId = 1 m_prevPage = (0:0)
m_nextPage = (0:0) pminlen = 11 m_slotCnt = 133
m_freeCnt = 5968 m_freeData = 1958 m_reservedCnt = 0
m_lsn = (69:1958:6) m_xactReserved = 0 m_xdesId = (0:0)
m_ghostRecCnt = 0 m_tornBits = 0

DATA:

Slot 0, Offset 0x60

Record Type = INDEX_RECORD
Record Attributes = NULL_BITMAP
19a8a060: 00000116 00126800 02000100 0000h........

Slot 1, Offset 0x6e

Root Node

Intermediate Node

Data Data Data

Intermediate Node

Data Data Data

Intermediate Node

Data Data Data

102 ArcSDE Configuration and Tuning Guide for SQL Server

Record Type = INDEX_RECORD
Record Attributes = NULL_BITMAP
19a8a06e: 00001816 00126a00 02000100 0000j........

Since a cluster orders the storage of a table, you cannot specify different file groups for
the cluster and its table. For example, if you specify in the dbtune table that the feature
table’s clustered index should go on file group f_idx and the table should reside on
f_storage, your table will be stored with the index on f_idx.

What will happen here?

DEFAULTS F_INDEX_CLUSTER 1

DEFAULTS F_INDEX_FID WITH FILLFACTOR=75 ON F_IDX

DEFAULTS F_STORAGE ON F_STORAGE

Index maintenance
When you initially create a table with a clustered index and specify a fillfactor for that
index, each data page is filled to that fill percentage when you initially insert rows. Later,
when you edit this table with insert, delete, and update statements, the amount of data
contained in each page will tend to increase.

If a data page fills to 100 percent and that particular page incurs an update or an insert,
the page splits approximately in half. Half of the page moves into a newly allocated
extent not contiguous to its former location. This will fragment your tables and increase
query time as the disk spindles must travel to more locations to fetch data.

You can use the fillfactor clause in the dbtune table to delay page splits by limiting the fill
percentage of a data page when it is initially allocated. Any ensuing inserts or updates
will add to the fill percentage of a data page. Monitor page splits with DBCC
SHOWCONTIG, and when your tables become fragmented rebuild your clustered
indexes or run DBCC INDEXDEFRAG (SQL Server 2000 only) or DBCC
DBREINDEX.

Rebuilding a clustered index will reorder its table and defragment it. Data pages are reset
to their initial fillfactor setting. The simplest way to rebuild an index is to place an
ArcSDE feature class into Load_only_io then back to normal_io. However, this won’t
work on versioned data.

If your data is multiversioned, you don’t need to worry about monitoring the ArcSDE
business table for extent fragmentation. Instead, your delta tables (a&d), feature tables,
and spatial index will become fragmented. You can issue a DBCC DBREINDEX
statement or invoke the DBCC INDEXDEFRAG command.

Here’s an example of DBCC SHOWCONTIG run against a feature class that has
incurred several edits—in this case, many updates and deletes. The output shown below
reflects only fragmentation against the spatial index.

Appendix A—ArcSDE compressed binary 103

dbcc showcontig('hydro.s5')

DBCC SHOWCONTIG scanning 's5' table...
Table: 's5' (1622296839); index ID: 1, database ID: 7
TABLE level scan performed.
- Pages Scanned................................: 57
- Extents Scanned..............................: 11
- Extent Switches..............................: 36
- Avg. Pages per Extent........................: 5.2
- Scan Density [Best Count:Actual Count].......: 21.62% [8:37]
- Logical Scan Fragmentation: 33.33%
- Extent Scan Fragmentation: 27.27%
- Avg. Bytes Free per Page.....................: 3780.6
- Avg. Page Density (full).....................: 53.29%

For an exact explanation of these numbers, see the SQL Server Books Online under
DBCC SHOWCONTIG. In this case, 36 extent switches are far too many to cover 57
pages. The best count reflects an optimal amount of extent switches, which in this case
would be 8. Both extent scan fragmentation and logical scan fragmentation should be as
close to 0 as possible. These measurements reflect the ordering of pages and extents in
the index allocation map. Running either of these commands on this table will
defragment the table.

dbcc indexdefrag (sde,'vtest.s5',s5_pk)
dbcc dbreindex('hydro.s5')

DBCC SHOWCONTIG scanning 's5' table...
Table: 's5' (1622296839); index ID: 1, database ID: 7
TABLE level scan performed.
- Pages Scanned................................: 41
- Extents Scanned..............................: 6
- Extent Switches..............................: 5
- Avg. Pages per Extent........................: 6.8
- Scan Density [Best Count:Actual Count].......: 100.00% [6:6]
- Logical Scan Fragmentation: 4.88%
- Extent Scan Fragmentation: 33.33%
- Avg. Bytes Free per Page.....................: 2096.6
- Avg. Page Density (full).....................: 74.10%

DBCC DBREINDEX and DBCC INDEXDEFRAG differ in that INDEXDEFRAG can
be run online. It will not block queries or updates. For relatively unfragmented tables,
DBCC INDEXDEFRAG should run faster than DBREINDEX. For more severely
fragmented data, use DBREINDEX.

You only need to worry about business table fragmentation after running a full compress,
when the delta tables have been flushed into the business table. Therefore, you should
rebuild your business tables’ clustered indexes after running a full compress.

Network packet size (SDEPACKETSIZE)
ArcSDE for Microsoft SQL Server stores geometry in an image data type column, points,
of the feature table. Several geodatabase network tables use image type columns.
Microsoft recommends increasing the size of the network packet size setting when
employing image data type columns.

104 ArcSDE Configuration and Tuning Guide for SQL Server

Network packet size is the size of the tabular data scheme (TDS) packets used to
communicate between applications and the relational database engine. The default packet
size is 4 KB and is controlled by the network packet size configuration option.

ArcSDE, by default, sets this to 8192K, double its default setting of 4096K. You can also
make this setting global to your Microsoft SQL Server by using the sp_configure
statement’s network packet size setting.

sp_configure 'show advanced options',1

reconfigure with override

go

sp_configure 'network packet size',8192

reconfigure with override

go

You can control the network packet size setting with the environment variable
SDEPACKETSIZE, although it is recommended that you stay with the default setting.

Text in row (SQL Server 2000 only)
SQL Server 2000 allows up to 7 KB of image, text, or n text data to be stored directly in a
row on a data page. SQL Server 7 stored these data types in separate image pages,
located with a 16-byte pointer in the table’s data page. Text-in-row at SQL Server 20+00
permits you to place image type data directly in the data page, and anything exceeding
the setting is placed in a traditional image page. All ArcSDE geometry is stored in an
image type column in the feature table. ArcSDE raster layers and geodatabase network
tables use image data types.

This setting is enabled on tables using the command sp_tableoption. ArcSDE does this
automatically for you through the dbtune table. The SDE_dbtune table sets a default of
256 bytes for many settings.

Keyword Parameter Explanation

DEFAULTS B_TEXT_IN_ROW Business tables with BLOB data type

DEFAULTS F_TEXT_IN_ROW Feature tables points column

NETWORK_DEFAULTS B_TEXT_IN_ROW Network business table with BLOB type

NETWORK_DEFAULTS F_TEXT_IN_ROW Feature table for generated junctions
class

NETWORK_DEFAULTS::NETWORK B_TEXT_IN_ROW N_ tables with image type columns

Appendix A—ArcSDE compressed binary 105

This may not be the best size for all your data. You don’t want to allow too much
text_in_row space on your data pages if you can’t fill it. For example, it would be unwise
to set this option to 7000 because you would create many more data pages and extents,
thus lengthening the distance a query must travel to retrieve data. Likewise,
underestimating this number would create more image data pages and could produce the
same problem.

One way to determine an optimal table text_in_row setting is to estimate the eightieth
percent size of all your image type records and store up to that size in the
*_TEXT_IN_ROW setting. First you’ll have to load your data, then run this query:

select top 20 percent(datalength(points)) from boris.f12 order by
datalength(points) desc

This query will list the top 20 percent largest data records in the “points” column of a
feature class’s feature table. You then pick the smallest value from its result set and use
that for a dbtune entry and reload your data, referencing that keyword. In this case, the
eightieth percent value equaled 455, so you would make this entry in the dbtune table:

Keyword Parameter Explanation

CARTO F_INDEX_FID WITH FILLFACTOR=75 ON FG_CARTO

CARTO F_TEXT_IN_ROW 455

Now reload this data referencing this keyword to pick up the new F_TEXT_IN_ROW
setting. You could also put this value in the DEFAULTS keyword, but then all data loads
would use this size.

shp2sde –o create –l silos,shape –f silos –a all –D carto –s bigboy –u
boris –p badinoff –k CARTO

You may want to check if a particular table has been enabled for text in row and what its
current size is set to. Use the OBJECTPROPERTY Transact-SQL metadata function:

select objectproperty(object_id('boris.f12'),'tabletextinrowlimit')

You may not want to reload your data. In this case, you can enable a table for
text_in_row with sp_tableoption and write a query to copy all the existing image data
types into a new column:

/*
 FeatureTable_Text_in_Row.sql
 script to copy existing points data into new column
 with new text in row value enabled

 SQL Server 2000 Only

 Script Unsupported by ESRI
*/

sp_tableoption 'boris.f12','text in row',455
go
alter table boris.f12
add newpoints image

106 ArcSDE Configuration and Tuning Guide for SQL Server

go
update boris.f12
set newpoints=points
go
alter table boris.f12
drop column points
go
sp_rename 'boris.f12.newpoints','points','column'
go

If you have a lot of existing data in SQL Server 7.0 and desire to move this data into SQL
Server 2000, you’ll want to move this data into the new text_in_row format. How you
perform your upgrade will determine how your data is moved from a traditional image
page into text_in_row.

Text_in_row is enabled with the sp_tableoption command, and ArcSDE sets a
text_in_row default (in the sde_dbtune table) for all feature tables to 255 bytes. This
means that any layer or feature class creation in ArcSDE on SQL Server 2000 will use
the text_in_row option. To upgrade an existing SQL Server 7.0 database to SQL Server
2000 and push your image data into text_in_row format, you can:

• Perform a geodatabase copy and paste between two ArcSDE servers: one running
SQL Server 7.0 and the other SQL Server 2000.

• Reload all your data into ArcSDE on SQL Server 2000.

• Run the SQL Server 2000 upgrade wizard or restore your SQL Server 7.0 databases
to a SQL Server 2000 instance. Once you have done this, run the
FeatureTable_Text_in_Row.sql listed above.

Text_in_row for rasters

A raster stored in ArcSDE is composed of four tables. Of those, the sde_blk_<n> table
holds the largest image type column. You can enable text_in_row for this table with the
dbtune entry BLK_TEXT_IN_ROW. For example:

RASTER BLK_TEXT_IN_ROW 2000

This will entail changing the raster tile size as well. We recommend that you stay with
the defaults as setting a large text_in_row will create too many data pages and extents,
eventually slowing your queries.

Triggers
All feature class business tables have a delete update trigger and an insert trigger. The
insert trigger ensures that the spatial column cannot have duplicate values in the business
table, while the delete–update trigger manages activity against the spatial column in the
business, feature, and spatial index tables. You can view these triggers in the SQL Server
Enterprise Manager.

These triggers are automatically dropped whenever a feature class, either stand-alone or
in a feature dataset, is multiversioned. They are re-created when a feature class is

Appendix A—ArcSDE compressed binary 107

unregistered as versioned. If you edit one of these triggers, then multiversion the feature
class, the trigger will be dropped.

“I” tables and stored procedures
You’ll notice that once you’ve loaded data or run sdesetupmssql, you will have several
“i” tables and stored procedures in your databases. These stored procedures and tables are
used for fetching feature IDs for feature classes. Editing these tables or stored procedures
is not supported and highly discouraged.

108 ArcSDE Configuration and Tuning Guide for SQL Server

A P P E N D I X B

Storing raster data

A raster is a rectangular array of equally spaced cells, which taken as a

whole represent thematic, spectral, or picture data. Raster data can

represent everything from qualities of land surface, such as elevation or

vegetation, to satellite images, scanned maps, and photographs.

You are probably familiar with raster formats such as tag image file format (TIFF), Joint
Photographic Experts Group (JPEG), and Graphics Interchange Format (GIF) that your
Internet browser renders. These rasters are composed of one or more bands. Each band
is segmented into a grid of square pixels. Each pixel is assigned a value that reflects the
information it represents at a particular position.

For an expanded discussion of the type of raster data supported by ESRI products,
review Chapter 9, ‘Cell-based modeling with rasters’, in Modeling Our World.

ArcSDE stores raster datasets similar to the way it stores compressed binary feature
classes (see Appendix A, ‘ArcSDE compressed binary’). A raster column is added to a
business table, and each cell of the raster column contains a reference to a raster stored in
a separate raster table. Therefore, each row of a business table references an entire raster.

ArcSDE stores the raster bands in the raster band’s table. ArcSDE joins the raster band’s
table to the raster table on the raster_id column. The raster band table’s raster_id column
is a foreign key reference to the raster table’s raster_id primary key.

ArcSDE automatically stores any existing image metadata such as image statistics, color
maps, or bit masks in the raster auxiliary table. The rasterband_id column of the raster
auxiliary table is a foreign key reference to the primary key of the raster band’s table.
ArcSDE joins the two tables on this primary/foreign key reference when accessing a
raster band’s metadata.

110 ArcSDE Configuration and Tuning Guide for SQL Server

The raster block’s table stores the pixels of each raster band. ArcSDE tiles the pixels into
blocks according to a user-defined dimension. ArcSDE does not have a default
dimension; however, applications that store raster data in ArcSDE do. ArcToolbox™ and
ArcCatalog, for example, use default raster block dimensions of 128 by 128 pixels per
block. The dimensions of the raster block, along with the compression method if one is
specified, determine the storage size of each raster block. You should select raster block

The rendition of rasters

Multiband rasters are often displayed as red-
green-blue composites. This band configuration
is common because these bands can be directly
displayed on computer displays, which employ a
red-green-blue color rendition model.

Raster datasets have one or many
bands. In multiband rasters, a band

represents a segment of the
electromagnetic spectrum that has

been collected by a sensor.

Red
band

Green
band

Blue
band

Red-green-blue
composite

Attribute values
range from 0 to 255

in each band

255

0

Displaying multiband rasters

Electromagnetic spectrum

band 1

band 2

band 3

Bands often represent a portion of the electromagnetic
spectrum, including ranges not visible to the eye—the
infrared or ultraviolet sections of the spectrum.

A raster can have one or many bands. The cell values of rasters can be drawn in a variety of
ways. These are some of the ways to display rasters by cell values.

Monochrome
image

0 0 0 0 1 1

1 0 0 1 1 0

1 0 1 1 0 0

0 0 0 1 1 0

1 1 0 0 0 1

0 1 1 1 0 0

0

251

41

86

118

141

187 236

201

16 25532

66

126

124 183

191 198

0

243

68

76 124

162

170

212

251 10

255

56

68

124

132

152

218

234

00 1 255

Grayscale
image

Display colormap
image

1 3

42

5

1

3

4

2

5

1 3

4

2

5

1

3

42

5

1

3

4

2

5

1 3

42

5

1 34 2

5

2

1

3

4

2

5

Colormap

red green blue

64

255 0

128

3232

0

255

255 128

25500

128

255

In a monochrome image, each cell
has a value of 0 or 1. They are often
used for scanning maps with simple
linework, such as parcel maps.

In a grayscale image, each cell has a
value from 0 to 255. They are often
used for black-and-white aerial
photographs.

One way to represent colors on an
image is with a colormap. A set of
values is arbritrarily coded to match a
defined set of red-green-blue values.

Cell values in single-band rasters can be drawn in these three basic ways.

Displaying single-band rasters

Appendix B—Storing raster data 111

dimensions that, combined with the compression method, allow each row of the raster
block table to fit within SQL Server.

The raster block’s table contains the rasterband_id column, which is a foreign key
reference to the raster band table’s rasterband_id primary key. ArcSDE joins these tables
together on the primary/foreign key reference when accessing the blocks of the raster
bands.

ArcSDE populates the raster blocks table according to a declining resolution pyramid.
The height of the pyramid is determined by the number of levels, specified by
application. The application such as ArcToolbox or ArcCatalog, may allow you to
define the levels, may request that ArcSDE calculate them, or may offer both possible
choices.

The pyramid begins at the base, or Level 0, which contains the original pixels of the
image. The pyramid proceeds toward the apex by coalescing four pixels from the
previous level into a single pixel at the current level. This process continues until less
than four pixels remain or until ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels.
The addition of the pyramid levels increases the number of raster blocks by one-third.
However, since it is possible for the user to specify the number of levels, the apex of the
pyramid may not be obtainable, and therefore, the size increase of the raster blocks table
is restricted to the number of resolution levels added.

When you build a pyramid more rasters are created by progressively downsampling the previous level
by a factor of two until the apex. As the application zooms out and the raster cells grow smaller than
the resolution threshold, ArcSDE selects a higher level of the pyramid. The purpose of the pyramid is
to optimize display performance.

The pyramid allows ArcSDE to provide the application with a constant resolution of
pixel data regardless of the rendering window’s scale. Data of a large raster transfers
quicker to the client when a pyramid exists since ArcSDE can transfer fewer cells of a
reduced resolution.

112 ArcSDE Configuration and Tuning Guide for SQL Server

Raster schema
When you import a raster into an ArcSDE database, ArcSDE adds a raster column to the
business table of your choice. You may name the raster column whatever you like, so
long as it conforms to SQL Server’s column naming convention. ArcSDE restricts one
raster column per business table.

The raster column is a foreign key reference to the raster_id column of the raster table
created during the addition of the raster column. Also joined to the raster table’s
raster_id primary key, the raster band table stores the bands of the image. The raster
auxiliary table, joined one-to-one to the raster bands table by rasterband_id, stores the
metadata of each raster band. The rasterband_id also joins the raster band’s table to the
raster blocks table in a many-to-one relationship. The raster blocks table rows store
blocks of pixels, determined by the dimensions of the block.

Appendix B—Storing raster data 113

When ArcSDE adds a raster column to a table, it records that column in the sde user’s
raster_columns table. The rastercolumn_id is used in the creation of the table names of the raster,
raster bands, raster auxiliary, and raster blocks table.

The sections that follow describe the schema of the tables associated with the storage of
raster data. Refer to the previous illustration to see tables and the manner in which they
are associated with one another.

RASTER_COLUMNS table

When you add a raster column to a business table, ArcSDE adds a record to the
RASTER_COLUMNS system table maintained in the sde user’s schema. ArcSDE also
creates four tables to store the raster images and metadata associated with each one.

114 ArcSDE Configuration and Tuning Guide for SQL Server

NAME DATA TYPE NULL?

rastercolumn_id INT(4) NOT NULL

description VARCHAR(65) NULL

database_name VARCHAR(32) NULL

owner VARCHAR(32) NOT NULL

table_name VARCHAR(160) NOT NULL

raster_column VARCHAR(32) NOT NULL

cdate INT(4) NOT NULL

config_keyword VARCHAR(32) NULL

minimum_id INT(4) NULL

base_rastercolumn_id INT(4) NOT NULL

rastercolumn_mask INT(4) NOT NULL

srid INT(4) NULL

Raster columns table

• rastercolumn_id (SE_INTEGER_TYPE)—The table’s primary key.

• description (SE_STRING_TYPE)—The description of the raster table.

• database_name (SE_STRING_TYPE)—The name of the database.

• owner (SE_STRING_TYPE)—The owner of the raster column’s business table.

• table_name (SE_STRING_TYPE)—The business table name.

• raster_column (SE_STRING_TYPE)—The raster column name.

• cdate (SE_INTEGER_TYPE)—The date the raster column was added to the
business table.

• config_keyword (SE_STRING_TYPE)—The DBTUNE configuration keyword
whose storage parameters determine how the tables and indexes of the raster are
stored in the SQL Server database. For more information on DBTUNE
configuration keywords and their storage parameters, review Chapter 3,
‘Configuring dbtune storage parameters’.

• minimum_id (SE_INTEGER_TYPE)—Defined during the creation of the raster,
establishes value of the raster table’s raster_id column.

• base_rastercolumn_id (SE_INTEGER_TYPE)—If a view of the business table is
created that includes the raster column, an entry is added to the
RASTER_COLUMNS table. The raster column entry of the view will have its own
rastercolumn_id. The base_rastercolumn_id will be the rastercolumn_id of the
business table used to create the view. This base_rastercolumn_id maintains

Appendix B—Storing raster data 115

referential integrity to the business table. It ensures that actions performed on the
business table raster column are reflected in the view. For example, if the business
table’s raster column is dropped, it will also be dropped from the view (essentially
removing the view’s raster column entry from the RASTER_COLUMNS table).

• rastercolumn_mask (SE_INTEGER_TYPE)—Currently not used, maintained for
future use.

• rid (SE_INTEGER_TYPE)—The spatial reference ID (SRID) is a foreign key
reference to the SPATIAL_REFERENCES table. For images that can be geo-
referenced, the SRID establishes the X and Y offset translation factor and the scale
factor for storage of the image coordinates into the 32-bit integer ArcSDE
coordinate storage system. It also stores the coordinate reference system the image
was created under.

Business table

In the example that follows, the fictitious BUILD_FOOTPRINTS business table
contains the raster column house_image. This is a foreign key reference to the raster
table created in the user’s schema. In this case the raster table contains a record for each
raster of a house. It should be noted that images of houses cannot be georeferenced.
Therefore, the SRID column of the RASTER_COLUMN record for this raster is NULL.

NAME DATA TYPE NULL?

Building_id INT(4) NOT NULL

building_footprint INT(4) NOT NULL

house_picture INT(4) NOT NULL

BUILDING_FOOTPRINTS business table with house image raster column

• building_id (SE_INTEGER_TYPE)—the table’s primary key

• building_footprints (SE_INTEGER_TYPE)—a spatial column and foreign key
reference to a feature table containing the building footprints

• house_image (SE_INTEGER_TYPE)—a raster column and foreign key reference
to a raster table containing the images of the houses located on each building
footprint

Raster table (SDE_RAS_<rastercolumn_id>)

The raster table, created as SDE_RAS_<raster_column_id> in the SQL Server, stores a
record for each image stored in a raster column. Raster_column_id is assigned by
ArcSDE whenever a raster column is created in the database. A record for each raster

116 ArcSDE Configuration and Tuning Guide for SQL Server

column in the database is stored in the ArcSDE RASTER_COLUMNS system table
maintained in the sde user’s schema.

NAME DATA TYPE NULL?

Raster_id INT(4) NOT NULL

raster_flags INT(4) NULL

description VARCHAR(65) NULL

Raster description table schema (SDE_RAS_<raster_column_id)

• raster_id (SE_INTEGER_TYPE)—The primary key of the raster table and unique
sequential identifier of each image stored in the raster table

• raster_flags (SE_INTEGER_TYPE)—A bit map set according to the characteristics
of a stored image

• description (SE_STRING_TYPE)—A text description of the image (not
implemented at ArcSDE 8.1)

Raster band table (SDE_BND_<rastercolumn_id>)

Each image referenced in a raster may be subdivided into one or more raster bands. The
raster band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of
each image stored in the raster table. The raster_id column of the raster band table is a
foreign key reference to the raster table’s raster_id primary key. The rasterband_id
column is the raster band table’s primary key. Each raster band in the table is uniquely
identified by the sequential rasterband_id.

NAME DATA TYPE NULL?

rasterband_id INT(4) NOT NULL

sequence_nbr INT(4) NOT NULL

raster_id INT(4) NOT NULL

name VARCHAR(65) NULL

band_flags INT(4) NOT NULL

band_width INT(4) NOT NULL

band_height INT(4) NOT NULL

band_types INT(4) NOT NULL

block_width INT(4) NOT NULL

block_height INT(4) NOT NULL

block_origin_x FLOAT(8) NOT NULL

block_origin_y FLOAT(8) NOT NULL

eminx FLOAT(8) NOT NULL

eminy FLOAT(8) NOT NULL

Appendix B—Storing raster data 117

NAME DATA TYPE NULL?

emaxx FLOAT(8) NOT NULL

emaxy FLOAT(8) NOT NULL

cdate INT(4) NOT NULL

mdate INT(4) NOT NULL

Raster band table schema

• rasterband_id (SE_INTEGER_TYPE)—The primary key of the raster band table
that uniquely identifies each raster band.

• sequence_nbr (SE_INTEGER_TYPE)—An optional sequential number that can be
combined with the raster_id as a composite key, a second way to uniquely identify
the raster band.

• raster_id (SE_INTEGER_TYPE)—The foreign key reference to the raster table’s
primary key. Uniquely identifies the raster band when combined with sequence_nbr
as a composite key.

• name (SE_STRING_TYPE)—The name of the raster band.

• band_flags (SE_INTEGER_TYPE)—A bit map set according to the characteristics
of the raster band.

• band_width (SE_INTEGER_TYPE)—The pixel width of the band.

• band_height (SE_INTEGER_TYPE)—The pixel height of the band.

• band_types (SE_INTEGER_TYPE)—A bit map band compression data.

• block_width (SE_INTEGER_TYPE)—The pixel width of the band’s tiles.

• block_height (SE_INTEGER_TYPE)—The pixel height of the band’s tiles.

• block_origin_x (SE_FLOAT_TYPE)—The leftmost pixel.

• block_origin_y (SE_FLOAT_TYPE)—The bottommost pixel.

If the image has a map extent, the optional eminx, eminy, emaxx, and emaxy will hold
the coordinates of the extent.

• eminx (SE_FLOAT_TYPE)—the band’s minimum x coordinate

• eminy (SE_FLOAT_TYPE)—the band’s minimum y coordinate

• emaxx (SE_FLOAT_TYPE)—the band’s maximum x coordinate

• emaxy (SE_FLOAT_TYPE)—the band’s maximum y coordinate

118 ArcSDE Configuration and Tuning Guide for SQL Server

• cdate (SE_FLOAT_TYPE)—the creation date.

• mdate (SE_FLOAT_TYPE)—the last modification date.

Raster blocks table (SDE_BLK_<rastercolumn_id>)

Created as SDE_BLK_<rastercolumn_id>, the raster blocks table stores the actual pixel
data of the raster images. ArcSDE evenly tiles the bands into blocks of pixels. Tiling the
raster band data enables efficient storage and retrieval of the raster data. The raster
blocks can be configured so that the records of the raster block table fit with a SQL
Server data block, avoiding the adverse effects of data block chaining.

The rasterband_id column of the raster block table is a foreign key reference to the raster
band table’s primary key. A composite unique key is formed by combining the
rasterband_id, rrd_factor, row_nbr, and col_nbr columns.

NAME DATA TYPE NULL?

rasterband_id INT(4) NOT NULL

rrd_factor INT(4) NOT NULL

row_nbr INT(4) NOT NULL

col_nbr INT(4) NOT NULL

block_data image NOT NULL

Raster block table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster
band table’s primary key.

• rrd_factor (SE_INTEGER_TYPE)—The reduced resolution dataset factor
determines the position of the raster band block within the resolution pyramid. The
resolution pyramid begins at 0 for the highest resolution and increases until the
raster bands lowest resolution level has been reached.

• row_nbr (SE_INTEGER_TYPE)—The block’s row number.

• col_nbr (SE_INTEGER_TYPE)—The block’s column number.

• block_data (SE_BLOB_TYPE)—The block’s tile of pixel data.

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

The raster band auxiliary table, created as SDE_AUX_<rastercolumn_id>, stores
optional raster metadata such as the image color map, image statistics, and bit masks
used for image overlay and mosaicking. The rasterband_id column is a foreign key
reference to the primary key of the raster band table.

Appendix B—Storing raster data 119

NAME DATA TYPE NULL?

rasterband_id INT(4) NOT NULL

type INT(4) NOT NULL

object image NOT NULL

Raster auxiliary table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster
band table’s primary key.

• type (SE_INTEGER_TYPE)—A bit map set according to the characteristics of the
data stored in the object column.

• object (SE_BLOB_TYPE)—May contain the image color map, image statistics,
and so forth.

120 ArcSDE Configuration and Tuning Guide for SQL Server

A P P E N D I X C

The well-known binary
representation

The well-known binary representation for OGC geometry

(WKBGeometry) provides a portable representation of a geometry value

as a contiguous stream of bytes. It permits geometry values to be

exchanged between an ODBC client and an SQL database in binary

form.

The well-known binary representation for geometry is obtained by serializing a
geometry instance as a sequence of numeric types drawn from the set {Unsigned
Integer, Double}, and then serializing each numeric type as a sequence of bytes using
one of two well-defined, standard binary representations for numeric types (NDR,
XDR). The specific binary encoding used for a geometry byte stream is described by a
one-byte tag that precedes the serialized bytes. The only difference between the two
encodings of geometry is byte order. The XDR encoding is big-endian, while the NDR
encoding is little-endian.

Numeric type definitions
An unsigned integer is a 32-bit (4 byte) data type that encodes a nonnegative integer in
the range [0, 4294967295].

A double is a 64-bit (8 byte) double-precision data type that encodes a double-precision
number using the IEEE 754 double-precision format.

122 ArcSDE Configuration and Tuning Guide for SQL Server

The above definitions are common to both XDR and NDR.

XDR (big endian) encoding of numeric types
The XDR representation of an unsigned integer is big endian (most significant byte
first).

The XDR representation of a double is big endian (most significant bit is first byte).

NDR (little endian) encoding of numeric types
The NDR representation of an unsigned integer is little endian (least significant byte
first).

The NDR representation of a double is little endian (sign bit is last byte).

Conversion between the NDR and XDR representations of
WKB geometry

Conversion between the NDR and XDR data types for unsigned integers and doubles is
a simple operation involving reversing the order of bytes within each unsigned integer or
double in the byte stream.

Description of WKBGeometry byte streams
The well-known binary representation for geometry is described below. The basic
building block is the byte stream for a point that consists of two doubles. The byte
streams for other geometries are built using the byte streams for geometries that have
already been defined.

// Basic Type definitions

// byte : 1 byte

// uint32 : 32 bit unsigned integer (4 bytes)

// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Appendix C—The well-known binary representation 123

Point {
double x;
double y;
};

LinearRing {
uint32 numPoints;
Point points[numPoints];
}

enum wkbGeometryType {
wkbPoint = 1,
wkbLineString = 2,
wkbPolygon = 3,
wkbMultiPoint = 4,
wkbMultiLineString = 5,
wkbMultiPolygon = 6,
wkbGeometryCollection = 7
};

enum wkbByteOrder {

 wkbXDR = 0, // Big Endian

 wkbNDR = 1 // Little Endian

};

WKBPoint {
byte byteOrder;
uint32 wkbType; // 1
Point point;
}

WKBLineString {
byte byteOrder;
uint32 wkbType; // 2
uint32 numPoints;
Point points[numPoints];
}

WKBPolygon {
byte byteOrder;
uint32 wkbType; // 3
uint32 numRings;
LinearRing rings[numRings];
}

WKBMultiPoint {
byte byteOrder;
uint32 wkbType; // 4
uint32 num_wkbPoints;
WKBPoint WKBPoints[num_wkbPoints];
}

124 ArcSDE Configuration and Tuning Guide for SQL Server

WKBMultiLineString {
byte byteOrder;
uint32 wkbType; // 5
uint32 num_wkbLineStrings;
WKBLineString WKBLineStrings[num_wkbLineStrings];
}

wkbMultiPolygon {
byte byteOrder;

uint32 wkbType; // 6
uint32 num_wkbPolygons;
WKBPolygon wkbPolygons[num_wkbPolygons];
}

WKBGeometry {
union {
WKBPoint point;
WKBLineString linestring;
WKBPolygon polygon;
WKBGeometryCollection collection;
WKBMultiPoint mpoint;
WKBMultiLineString mlinestring;
WKBMultiPolygon mpolygon;
}
};

WKBGeometryCollection {
byte byte_order;
uint32 wkbType; // 7
uint32 num_wkbGeometries;
WKBGeometry wkbGeometries[num_wkbGeometries]
}

Well-known binary representation for a geometry object in NDR format (B=1) of type polygon (T=3) with two linears
(NR = 2) and each ring having three points (NP = 3).

B=1 T= 3 NR=
2

NP
= 3

X1 Y1 X2 Y2 X3 Y3 NP=
3

X1 Y1 X2 Y2 X3 Y3

WKB
Polygon

Ring 1 Ring 2

Appendix C—The well-known binary representation 125

Assertions for well-known binary representation for
geometry

The well-known binary representation for geometry is designed to represent instances of
the geometry types described in the geometry object model and in the OpenGIS Abstract
Specification.

These assertions imply the following for rings, polygons, and multipolygons:

Linear rings—Rings are simple and closed, which means that linear rings may not self-
intersect.

Polygons—No two linear rings in the boundary of a polygon may cross each other. The
linear rings in the boundary of a polygon may intersect, at most, at a single point but
only as a tangent.

Multipolygons—The interiors of two polygons that are elements of a multipolygon may
not intersect. The boundaries of any two polygons that are elements of a multipolygon
may touch at only a finite number of points.

126 ArcSDE Configuration and Tuning Guide for SQL Server

A P P E N D I X D

Storing locators

A locator is an object that you can use to convert textual descriptions of

locations into geographic features. The most common locator is an

address locator, which you can use to geocode addresses. For additional

documentation on creating and using locators in ArcGIS, see Geocoding

in ArcGIS in the ArcGIS documentation set.

ArcSDE stores locator definitions in the SDE_locators table. Three main types of
locators can be stored in an ArcSDE database:

• Locator styles are used as templates on which to base new locators.

• Locators define the inputs, outputs, logic, and one or more reference datasets that
are used to find locations. Locators are usually created by adding some properties to
a locator style that specify which reference datasets and which columns in those
reference datasets to use to find locations. Using ArcCatalog to create a locator
based on a locator style is the easiest way to create a new locator.

• Attached locators are copies of locators that are used to create a geocoded feature
class. When you create a geocoded feature class by geocoding a table of addresses
using an address locator, ArcSDE stores a copy of the locator that was used to
create the geocoded feature class. ArcSDE uses this attached locator when you
rematch addresses in the geocoded feature class.

Each locator style, locator, and attached locator has a number of properties that define
the locator. ArcSDE stores each property of a locator as a record in the SDE_metadata
table.

128 ArcSDE Configuration and Tuning Guide for SQL Server

Address locators use a set of geocoding rules that define how addresses are parsed,
standardized, and matched to the reference data used by the address locator. ArcSDE
stores geocoding rules in the GCDRULES table. Each row in the GCDRULES table
corresponds to a single file in a set of geocoding rules. For information on geocoding
rule files, see the Geocoding Rule Base Developer Guide in the ArcGIS documentation
set.

Many address locators require a geocoding index table for each reference data table.
Geocoding index tables are tables used by a locator to quickly search for records in the
corresponding reference datasets that may be matches for an address. The XID column
in a geocoding index table is a foreign key to the OBJECTID column in the
corresponding reference dataset. When you create a new address locator that requires a
geocoding index table for a reference dataset, ArcSDE creates the geocoding index table
if it does not already exist.

When a locator is instantiated, ArcSDE reads the locator record from the SDE_locators
table and all of the corresponding locator properties from the SDE_metadata table. Some
of the locator properties specify which set of geocoding rules to use, which are read from
the GCDRULES table. Other locator properties specify which feature classes or tables in
the ArcSDE database are used as reference datasets and which geocoding index tables, if
any, correspond to these reference datasets.

When you use a locator to geocode an address, the locator uses the specified geocoding
rules to parse the given address into its components. If the locator uses geocoding index
tables to index the reference data, the locator properties specify which of these address
components to use to search for matches in the geocoding index tables and which
transformations (usually the Soundex function) to apply to the address components
when searching for records in the geocoding index table. ArcSDE searches for records
matching the geocoding index query in the geocoding index table. The resulting set of
records from the geocoding index table is joined to the corresponding reference data
table to generate a set of candidates for the address. ArcSDE uses the locator’s properties
to determine which columns in the reference data feature class or table correspond to
address components used by the locator, then uses the geocoding rules to assign a score
to each candidate.

Locator schema
When you create a locator in an ArcSDE database, ArcSDE adds a record to the
SDE_locators table that defines the locator. ArcSDE also adds a record to the
SDE_metadata table for each property of the locator. The object_name column in the
SDE_metadata table is a foreign key to the Name column in the SDE_locators table that
ArcSDE uses to associate locators with their properties.

Appendix D—Storing locators 129

Each locator has associated FileMAT and FileSTN properties in the SDE_metadata table
that define which geocoding rules the locator uses. The values of these properties are in
the format style.type and define which geocoding rule files, stored in the GCDRULES
table, the locator uses to match addresses. The locator uses the value of these properties
in the SDE_metadata table to query the GCDRULES table on the STYLE and TYPE
columns to retrieve the correct set of geocoding rules. Locators that support intersection
geocoding have associated IntFileMAT and IntFileSTN properties that define the
geocoding rules to use for intersection geocoding.

When you create an address locator, ArcSDE may create one or more geocoding index
tables for the reference datasets used by the locator, depending upon the locator style on
which the address locator is based. Geocoding index table names are prefixed with
“GC_” and include characters identifying the type of geocoding index table and the
geodatabase object class ID of the table or feature class that it indexes. The XID column
in a geocoding index table is a foreign key to the OBJECTID column in the table or
feature class that the geocoding index table indexes.

In the example that follows, an ArcSDE database contains a STREET feature class that
represents street centerlines for a particular geographic area, such as a city. In addition to
the geometry for the street centerlines, the STREET feature class contains attributes for
the address ranges that can be found along the street and the components of the street
name. The ArcSDE table schema required to store a locator to allow address geocoding
on this feature class is described here.

130 ArcSDE Configuration and Tuning Guide for SQL Server

STREET
OBJECTID L_F_ADD L_T_ADD R_F_ADD R_T_ADD PREFIX PRE_TYPE NAME TYPE SUFFIX ZIPL ZIPR

1767 201 399 200 398 <null> <null> New York St <null> 92373 92373

GC_SZS826
SX XID LZONE RZONE

N620 1767 92373 92373

SDE_locators
locator_id name owner category type description

88 City_Streets SDE Address 1 US Streets with Zone
Address Locator

GCDRULES
ID STYLE TYPE DATA
41
42
43
44
45
51
52
53
54
55

us_addr
us_addr
us_addr
us_addr
us_addr1
us_intsc
us_intsc
us_intsc
us_intsc
us_intsc1

cls
dct
pat
stn
mat
cls
dct
pat
stn
mat

<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>

SDE_metadata
record_id

20874
20875
20878
20879
20979
20984

object_name object_owner

City_Streets
City_Streets
City_Streets
City_Streets
City_Streets
City_Streets

SDE
SDE
SDE
SDE
SDE
SDE

object_type

2
2
2
2
2
2

class_name

SDE internal
SDE internal
SDE internal
SDE internal
SDE internal
SDE internal

property

FileMAT
FileSTN
IntFileMAT
IntFileSTN
RD.Val.IdxTable1
RD.Val.Table1

prop_value

us_addr1.mat
us_addr.stn
us_intsc1.mat
us_intsc.stn
sde.SDE.GC_SZS826
sde.SDE.STREET

Business table

In this example, the STREET feature class represents street centerlines within a
particular geographic area and contains attributes that allow address locators to geocode
addresses using this feature class. By default, ArcSDE stores geometry for feature

Appendix D—Storing locators 131

classes in a separate feature table in the ArcSDE compressed binary format, which is
described in Appendix A.

NAME DATA TYPE NULL?
OBJECTID INT(4) NOT NULL
L_F_ADD INT(4) NULL
L_T_ADD INT(4) NULL
R_F_ADD INT(4) NULL
R_T_ADD INT(4) NULL
PREFIX VARCHAR(2) NULL
PRE_TYPE VARCHAR(5) NULL
NAME VARCHAR(30) NULL
TYPE VARCHAR(5) NULL
SUFFIX VARCHAR(2) NULL
ZIPL VARCHAR(5) NULL
ZIPR VARCHAR(5) NULL
Shape INT(4) NULL

STREET business table

• OBJECTID (SE_INTEGER_TYPE)—the table’s primary key

• L_F_ADD (SE_INTEGER_TYPE)—the address at the start node on the left side of
the street feature

• L_T_ADD (SE_INTEGER_TYPE)—the address at the end node on the left side of
the street feature

• R_F_ADD (SE_INTEGER_TYPE)—the address at the start node on the right side
of the street feature

• R_T_ADD (SE_INTEGER_TYPE)—the address at the end node on the right side
of the feature

• PREFIX (SE_STRING_TYPE)—the prefix direction component of the street’s
name

• PRE_TYPE (SE_STRING_TYPE)—the prefix type component of the street’s
name

• NAME (SE_STRING_TYPE)—the base component of the street’s name

• TYPE (SE_STRING_TYPE)—the suffix type component of the street’s name

132 ArcSDE Configuration and Tuning Guide for SQL Server

• SUFFIX (SE_STRING_TYPE)—the suffix direction component of the street’s
name

• ZIPL (SE_STRING_TYPE)—the ZIP Code on the left side of the street feature

• ZIPR (SE_STRING_TYPE)—the ZIP Code on the right side of the street feature

• Shape (SE_INTEGER_TYPE)—a foreign key to the feature table containing the
geometry for the feature class

Geocoding index table (GC_SZS<objectclass_id>)

When you create a locator that uses an ArcSDE feature class as reference data, the
locator style on which the locator is based may specify that a geocoding index table is
used when performing geocoding queries against the feature class. The locator style
defines the format of the name of the geocoding index table as well as the contents. In
this example, a locator based on the US Streets with Zone locator style was created on
the STREETS feature class. Geocoding index tables created by locators based on this
style contain a Soundex value for the street name as well as attributes for the zones on
each side of the street feature.

The size of the delta tables also depends on how often records are removed. These tables
shrink only when the states preceding the Level 0 version are compressed. This occurs
only after a version branching directly off the root of the version tree completes and is
removed from the system. The compression of states that follows will cause the changes
of the states between the Level 0 version and the next version following the one
removed to be written to the business table and deleted from the delta tables.

NAME DATA TYPE NULL?
SX VARCHAR(4) NULL

XID
INT(4) NULL

LZONE VARCHAR(5) NULL
RZONE VARCHAR(4) NULL

Geocoding index table

• SX (SE_STRING_TYPE)—the Soundex value for the street name

• XID (SE_INTEGER_TYPE)—a foreign key to the OBJECTID column in the
business table

• LZONE (SE_STRING_TYPE)—the zone on the left side of the street feature

• RZONE (SE_STRING_TYPE)—the zone on the right side of the street feature

Appendix D—Storing locators 133

SDE_locators table

When you add a locator to an ArcSDE database, ArcSDE adds a row to the
SDE_locators table. Each row in the SDE_locators table defines a locator or locator
style.

NAME DATA TYPE NULL?
locator_id INT(4) NOT NULL
Name VARCHAR(32) NOT NULL
Owner VARCHAR(32) NOT NULL
Category VARCHAR(32) NOT NULL
Type INT(4) NOT NULL
Description VARCHAR(64) NULL

SDE_locators table

• locator_id (SE_INTEGER_TYPE)—the table’s primary key

• name (SE_STRING_TYPE)—the name of the locator

• owner (SE_STRING_TYPE)—the name of the ArcSDE user that owns the locator

• category (SE_STRING_TYPE)—the category of the locator; address locators have
a category value of “Address”

• type (SE_INTEGER_TYPE)—the type of locator; values in this column are
represented as follows:

• 0—Define locator styles.

• 1—Define locators (in other words, locators that can be used to find locations).

• 2—Define attached locators (in other words, locators that are attached to a
geocoded feature class and are a copy of the locator and the geocoding options
that were used to create the geocoded feature class).

• description (SE_STRING_TYPE)—The description of the locator

SDE_metadata table

When you add a locator to an ArcSDE database, ArcSDE adds a row to the
SDE_metadata table for each property of the locator. Each row in the SDE_metadata
table defines a single property for a locator. The object_name column is a foreign key to
the name column in the SDE_locators table that ArcSDE uses to associate a locator with
its properties.

134 ArcSDE Configuration and Tuning Guide for SQL Server

NAME DATA TYPE NULL?
record_id INT(4) NOT NULL
object_database VARCHAR(32) NULL
object_name VARCHAR(160) NULL
object_owner VARCHAR(32) NOT NULL
object_type INT(4) NOT NULL
class_name VARCHAR(32) NULL
property VARCHAR(32) NULL
prop_value VARCHAR(255) NULL
description VARCHAR(65) NULL
creation_date DATETIME(8) NOT NULL

SDE_metadata table

• record_id (SE_INTEGER_TYPE)—the table’s primary key

• object_database (SE_STRING_TYPE)—the ArcSDE database in which the
described object is stored; not used for locator properties

• object_name (SE_STRING_TYPE)—the name of the locator to which the property
belongs

• object_owner (SE_STRING_TYPE)—the name of the ArcSDE user that owns the
record

• object_type (SE_INTEGER_TYPE)—always a value of 2 for locator properties

• class_name (SE_STRING_TYPE)—always a value of “SDE_internal” for locator
properties

• property (SE_STRING_TYPE)—the name of the locator property

• prop_value (SE_STRING_TYPE)—the value of the locator property

• description (SE_STRING_TYPE)—not used for locator properties

• creation_date (SE_DATE_TYPE)—the date and time at which the locator property
was created

GCDRULES table

The GCDRULES table stores the geocoding rules that are used by address locators to
match addresses. Each record in the GCDRULES table corresponds to a geocoding rule

Appendix D—Storing locators 135

file. For descriptions of each of the geocoding rule files and their contents, see the
Geocoding Rule Base Developer Guide in the ArcGIS documentation set.

NAME DATA TYPE NULL?
ID INT(4) NOT NULL
STYLE VARCHAR(32) NULL
TYPE VARCHAR(3) NULL
DATA image NULL

Geocoding rules table

• ID (SE_INTEGER_TYPE)—the table’s primary key

• STYLE (SE_STRING_TYPE)—the name of the geocoding rule set

• TYPE (SE_STRING_TYPE)—the type of geocoding rule file

• DATA (SE_BLOB_TYPE)—the contents of the geocoding rule file

136 ArcSDE Configuration and Tuning Guide for SQL Server

A P P E N D I X E

Making a direct connection

Direct connect is another configuration option for ArcSDE and all the

ArcSDE concepts and pre-requisites also apply to direct connect. The

main difference between ArcSDE’s application server and direct connect

is where the ArcSDE processing takes place. This purpose of this

appendix is to provide administrators information on how to setup and

configure direct connect configurations for the database as well as client

machines. If using the application server exclusively, you do not need

this appendix.

What files do you need?
There are two sets of ESRI-supplied files required for direct connect:

1 Direct connect drivers. These are dynamically linked libraries in the bin or lib
directory (depending on your operating system) of your client application that
provide the functionality to connect and use spatial data in a DBMS. There are
drivers for the following databases:

• IBM DB2

• IBM Informix

• Microsoft SQL Server

138 ArcSDE Configuration and Tuning Guide for SQL Server

• Oracle 8i and 9i

These drivers are automatically installed for ArcGIS (the whole product suite), ArcView
GIS 3.x Database Access, ArcIMS, ArcInfo workstation and MapObjects 2. If you are
using a non-ESRI custom application built from the ArcSDE C API, you may need to
install the direct connect drivers from the ArcSDE Developer Kit CD-ROM located in
the ArcSDE media kit. Check with the supplier of your non-ESRI custom application.

2 database setup files. These are files needed by an administrator to setup and
configure a DBMS for direct connect and include files like sdesetup<dbms>. The
setup is exactly the same as it is for the ArcSDE application server. These setup
files are located on the platform CD-ROM of choice in the ArcSDE media kit. To
get them, you must install ArcSDE for your database. You do not have to create an
application server; you only need the files on disk so you can use them against your
database.

DBMS considerations are as follows:

• Oracle8i™, Oracle9i

To facilitate network communication to an Oracle database, each client machine where
direct connect is used must have Oracle Net installed.

• Microsoft® SQL Server 7, Microsoft SQL Server 2000

SQL Server requires Microsoft Data Access Components (MDAC).

 If you intend to use ArcCatalog 9.0 or higher or ArcView GIS 3.3 with Database
Access 2.1f, MDAC version 2.6(SP1) or greater is required. If using ArcIMS 9.0 or
higher or ArcGIS 9.0 or higher to direct connect, you must have MDAC 2.6 or higher.

• DB2

 Each client machine must be configured for remote database access. Use the DB2
Configuration Assistant on the database host to connect to a remote database.

• Informix

Each client machine where direct connect will be used must have the Informix Client
SDK 2.8 or the Informix I-connect 2.8 application installed. The client machine must
also have the SetNet32 application installed, which comes with both the Informix Client
SDK 2.8 and the Informix I-connect 2.8 applications.

Appendix E—Making a direct connection for SQL Server 139

How to get your database setup files
You will need to get your database setup files from one of the CD–ROM’s in the
ArcSDE media kit. The ArcSDE media kit has CD–ROM’s by platform with the
exception of the ArcSDE Developer Kit CD–ROM. To get your database setup files,
you will need to install the software for the ArcSDE application server for your
database/platform. For example, if you are using IBM DB2 on a Sun Solaris server, you
will select the Sun Solaris CD–ROM from the ArcSDE media kit and install the DB2
version of ArcSDE on your Sun Solaris server. Please be sure to follow the post
installation configuration instructions in the database specific install guide but ignore any
instructions about creating the application server. You don’t need to do that. Install
guides are html files on each
CD–ROM. Please read them carefully.

Why do I need to install the ArcSDE application server
software?

Installation of the ArcSDE application server is to get the database setup and
administration files only. If you are a direct connect only site, you do not need to start an
ArcSDE application server. All you need to do is install the ArcSDE files to disk and
then follow the post installation configuration instructions. The administration files that
get installed (such as sdesetup<dbms>, sdeconfig, sdedbtune, sdelayer) are useful for
managing your connection parameters, dbtune table and manual
registration/unregistration of 3rd party layers. Please see the Managing ArcSDE
Application Servers book for more information.

If you use both the application server and direct connect at your site, you already have or
soon will have ArcSDE setup and administration files installed anyway. It is important
to note that once your database is configured for use with the ArcSDE application
server, it is also ready for direct connect usage.

Environment variables
For each client machine, there are environment variables you must set. If necessary, ask
your Windows or UNIX system administrator to find out how to set environment
variables on your systems.

The SDEHOME environment variable

You must set the SDEHOME variable to tell the client application:

140 ArcSDE Configuration and Tuning Guide for SQL Server

• Where the direct connect driver files are stored. For ESRI client applications, the
direct connect files are located in the same directory where the client application’s other
dynamically linked library files get installed. For Windows applications, this is normally
in the bin directory of your client applications install location. For UNIX and Linux
systems, these will normally be in the lib directory.

To set this environment variable, you must specify the full file path for it. For example,

UNIX: setenv SDEHOME /unix1/arcgis/

Windows: use Windows utilities to set a variable to something like this

Variable: Value:
SDEHOME C:\Program Files\ArcGIS\

The direct connect process will “look” for the appropriate driver in the bin or lib
directories of the specified path.

You do not have to set the SDEHOME environment variable if the following are true:

• Your users are using ESRI client applications built with the ArcSDE 9 C API (a list
of these applications is in Chapter 1, ‘Introducing direct connect’)

• Your users are not using UNIX

UNIX or Linux systems

1. Include $SDEHOME/lib in the library environment variable for your platform.

 If your database is an Oracle database, include $ORACLE_HOME/lib as well.

 For example:

 setenv LD_LIBRARY_PATH $SDEHOME/
 lib: $ORACLE_HOME/lib:/usr/ openwin/lib:/usr/lib

2. Add the bin directory to the system path:and

 An example follows for the SDEHOME variable.

 setenv PATH $JAVA_HOME/bin:$SDEHOME/
 bin:$AEJHOME/bin:/usr/sbin:/usr/bin:/usr/local/
 bin: /etc:/usr/ucb:/usr/dt/bin:/usr/bin/X11

Appendix E—Making a direct connection for SQL Server 141

3. If ArcIMS is your client application and Oracle is the database, append
$ORACLE_HOME/lib to the LD_LIBRARY_PATH variable in the aimsappsrvr and
aimsmonitor scripts, located in the $AIMSHOME/Xenv directory.

 For example, where your LD_LIBRARY_PATH variable now reads:

 LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/bin;
 export LD_LIBRARY_PATH

 It should now be:

 LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/
 bin:$ORACLE_HOME/lib; export LD_LIBRARY_PATH

The ETC directory

If an etc directory exists for the client application, it must be located in the directory you
specified for SDEHOME. If it isn’t located there, you must create it there. This etc
directory is where the log file of error messages will be stored by default.

The dbinit.sde file

This file is located in the etc directory of your SDEHOME. This file can be used to set
environment variables for direct connect use. It may be more convenient to set
environment variables for direct connect here than via system tools.

See Chapter 3 in Managing ArcSDE Application Servers for more information on the
dbinit.sde file.

Client/database compatibility
Direct connect drivers are only compatible with a same-vintage database configured for
ArcSDE. For example, you cannot direct connect from ArcMap 9.0 to a database that is
still at an 8.3 configuration. You would have to run the 9.0 setup configuration on that
8.3 database to be able to use direct connect from the ArcMap 9.0 client.

Registration and authorization
ArcSDE application servers and all direct connect configurations must be registered
before use. The end result of the registration process is an authorization file that is used
to enable the software for use. Please note that if you are an existing ArcSDE user, your
ArcSDE 8.x keycode will not work with 9.x. To register in the United States, go

142 ArcSDE Configuration and Tuning Guide for SQL Server

http://service.esri.com. If you are not in the United States, please call your local
distributor to register your software. If the Internet is not an option, you can contact
ESRI Customer Service or your local distributor to register and receive your 9.x
authorization file.

 Setting up clients for SQL Server direct connect

Set up the database

You must set up and configure each database that users will be direct connecting to. Use
standard Microsoft SQL Server tools and ArcSDE tools and documentation to

1. install the application server software

2. perform the post installation

When your database is configured for ArcSDE, you are ready to set up your client
machines.

Setting up the client machines

On the client machines for which you want to set up a direct connection, you

1 install MDAC

2 set environment variables

3 test the direct connection

If your client machines do not already have MDAC installed, consult Microsoft
documentation for MDAC installation instructions.

Set environment variables

Set the SDEHOME and SDE_DATABASE environment variables. Set SDEHOME to
point to the directory the client application’s dynamically linked library files are stored.
Optionally, set the SDE_DATABASE variable to the name of the SQL Server database
you will be connecting to.

Connection syntax

There is a particular syntax to use when connecting with direct connect. For the Service
(or instance) value,

sde:sqlserver:<sqlserver instance name>

Appendix E—Making a direct connection for SQL Server 143

where

sde:sqlserver

is a required part of the syntax and

<sqlserver instance name>

is the SQL Server instance you are connecting to. To connect to a specific “named
instance”, use the <server\instance name> convention. For example, to connect to a
named instance called “gis” on a server machine named “geo”, enter

sde:sqlserver:geo\gis.

Test the connection from the client application

Test the connection.

144 ArcSDE Configuration and Tuning Guide for SQL Server

A P P E N D I X F

Storing XML Data

This appendix discusses the storage of XML data in an ArcSDE for SQL

Server database. An ArcSDE XML column is used to store metadata

documents that are published to a Metadata Service. ArcSDE XML

columns require that full-text indexing functionality be installed and

configured in the databases storing those columns. This appendix will

help you understand storing and managing ArcSDE XML data.

Configuring ArcSDE for SQL Server
ArcSDE XML columns require SQL Server’s full-text search engine to be installed; the
full-text search engine is not supported with Microsoft SQL Server Desktop Engine
(MSDE). Once this is accomplished, the database and ArcSDE must be properly
configured for the XML column to operate effectively.

Installing SQL Server’s text component
The database administrator must accomplish steps 1 through 3 below before an XML
column, and therefore an ArcIMS Metadata Service, can be created.

Step 1: Install the full-text search engine. The full-text search engine is installed by
default with a typical installation of SQL Server 2000. However, you should be sure the
full-text search option is selected when you install the software. If you upgraded SQL
Server and full-text search was not installed in SQL Server 7.0, full-text search will not
be installed as part of the upgrade; it must be installed as an additional component after
the upgrade is completed.

Step 2: Verify the full-text search engine was installed properly. Once SQL Server
has been installed, you must verify the full-text search engine was installed properly by
running the following query using the Query Analyzer:

146 ArcSDE Configuration and Tuning Guide for SQL Server

SELECT fulltextserviceproperty('IsFulltextInstalled')

If the value 1 is returned, the full-text search engine has been installed properly. If the
value 0 or an error is returned by this query, you must install or reinstall the full-text
search engine. You will not be able to successfully create a full-text catalog or an
ArcSDE XML column if this query does not return the value 1.

Step 3: Create a full-text catalog in the database. Once the full-text search engine has
been correctly installed, you can use either the Enterprise Manager or the Query Analyzer
to create a full-text catalog in the database in which the Metadata Service’s objects will
be created.

The steps for creating a full-text catalog using Enterprise Manager are provided below. If
you prefer to use Query Analyzer, see the sp_fulltext_database and sp_fulltext_catalog
topics in SQL Server Books Online.

1. In the tree, click the plus sign (+) next to Microsoft SQL Servers, expand SQL
Server Groups, expand the appropriate SQL Server instance, then expand the
Databases folder.

2. Right-click the database in which the Metadata Service’s tables will be created.

3. Click New and click New Full-Text Catalog.

4. For Name, type SDE_DEFAULT_CAT. You can provide a different name for
the full-text catalog, but you must then modify the value of the
XML_IDX_FULLTEXT_CAT keyword in the SDE_dbtune table. This is
discussed in more detail below.

5. By default, the full-text catalog is stored in the FTDATA folder of your SQL
Server install location. To change this, click the ellipsis (...), and navigate to a
new location, then click OK.

6. Click OK in the New Full-Text Catalog Properties dialog box. Once a full-text
catalog has been added to the database, review the ArcSDE XML SDE_dbtune
parameters before creating an XML column or an ArcIMS Metadata Service.

Setting ArcSDE XML SDE_dbtune parameters
The XML parameters set in the SDE_dbtune table affect how documents published to an
ArcSDE XML column are indexed by the database. Information about the following
XML parameters should be reviewed before creating an XML column:
XML_IDX_FULLTEXT_CAT and XML_IDX_FULLTEXT_UPDATE_METHOD.

If your XML column will store documents written in a language other than English, you
will also want to review information about the XML_IDX_FULLTEXT_LANGUAGE
parameter in addition to verifying the language settings in the database. If you need to
change the default values for these SDE_dbtune parameters and your XML column is
associated with an ArcIMS Metadata Service, the changes need to be made for the
DEFAULTS keyword. This is discussed in more detail later in this Appendix.

Appendix F—XML data storage 147

For information on how to change or update these or any other SDE_dbtune keywords,
refer to Editing the SDE_dbtune table in Chapter 3 “Configuring Dbtune Storage
Parameters.”

XML_IDX_FULLTEXT_CAT

The value of the XML_IDX_FULLTEXT_CAT parameter must match the name of the
full-text catalog you created in the database. If the full-text catalog’s name is different,
the SDE_dbtune value must be updated to match it.

Multiple spatial database model: A multiple spatial database instance of ArcSDE has
one ArcSDE instance, one database named 'sde,' and one or more databases containing
spatial data are dependent upon the sde database. If you have a multiple spatial database
instance of ArcSDE, all spatial databases that will contain an ArcSDE XML column
must have their own full-text catalog. In this configuration, as each spatial database
references the central SDE_dbtune settings, each full-text catalog's name must match the
value of the SDE_dbtune XML_IDX_FULLTEXT_CAT parameter.

Single spatial database model: If you have a single spatial database instance of ArcSDE
(where there is one SQL Server database per ArcSDE instance), the name of the full-text
catalog in each database must match the value of the XML_IDX_FULLTEXT_CAT
parameter in that database. Each spatial database may have a different name for its full-
text catalog.

XML_IDX_FULLTEXT_UPDATE_METHOD

The frequency and method with which the full-text catalog will be updated in the
database needs to be considered based on the amount and rate of change of the
documents published to the XML column, the hardware resources available to the
database, and whether or not it is important for a newly published document to be
immediately available for a search.

Documents can only be found by a search once they have been indexed by the database;
that is, once the full-text catalog has been updated. The
XML_IDX_FULLTEXT_UPDATE_METHOD parameter in the SDE_dbtune table
determines how and when the full-text catalog will be updated.

By default, the XML_IDX_FULLTEXT_UPDATE_METHOD parameter is set to
CHANGE_TRACKING BACKGROUND. Change tracking means that when the full-
text catalog is updated, only documents added since the last update will be indexed. ESRI
recommends that you always use change tracking with your full-text catalog.
Background instructs the database to manage when the full-text catalog is updated and to
do so using a background process. If this parameter is changed to
CHANGE_TRACKING MANUAL, the full-text catalog must be updated manually.

Typically, CHANGE_TRACKING BACKGROUND will provide better overall
performance for your database. Background updates will be affected by the resources
available on the database server, the priority of the background process, and the load of
other operations on the database. Manual updates will have a higher priority in the
database and, thus, will probably be faster, but they will affect the performance of

148 ArcSDE Configuration and Tuning Guide for SQL Server

searches and other operations in the database. Updates to the full-text catalog should be
scheduled during windows for database maintenance (e.g., nightly); you may want to use
the SQL Server database’s tools to schedule when the full-text catalog will be updated.

Review the SQL Server Books Online topics ‘Full-Text Indexing Support’, ‘Maintaining
Full-text Indexes’, ‘Full-text Search Recommendations’, and ‘Performing Infrequent
Tasks’ for more information about updating full-text catalogs.

XML_IDX_FULLTEXT_LANGUAGE

If your Metadata Service will store documents written in a language other than English,
you may need to set the XML_IDX_FULLTEXT_LANGUAGE parameter in the
SDE_dbtune table. The XML_IDX_FULLTEXT_LANGUAGE parameter is used to set
the language of the column that is indexed in the full-text catalog. This setting affects the
linguistic analysis used to index the text in the published documents—if the published
documents are written in Japanese but the language of the column is set to English, the
text will not be indexed properly, and you will have trouble finding documents with a
search.

If you are using a localized version of SQL Server, the default full-text language option
will be set to the language of the server. For example, if you are using a Japanese version
of SQL Server, the language of the database, the full-text catalog, and the column to be
indexed should all be set to Japanese because the default full-text language option will be
set to Japanese. You should not have to change the value of the
XML_IDX_FULLTEXT_LANGUAGE parameter in the SDE_dbtune table.

If you are using an international version of SQL Server, the default full-text language
option will be set to U.S. English. Even if you specifically set the language of the
database and the full-text catalog to Japanese, the language of the column that will be
indexed will default to U.S. English. Set the XML_IDX_FULLTEXT_LANGUAGE
parameter in the SDE_dbtune table to the appropriate value for the language of the
published documents; this value is used to set the language of the column. See the SQL
Server Books Online help topic ‘sp_fulltext_column’ for the appropriate value; for
example, for Japanese you would set the value of the
XML_IDX_FULLTEXT_LANGUAGE parameter in the SDE_dbtune table to be
0x0411.

When a column is set to a specific language, such as Japanese, you will be able to publish
and search documents in both Japanese and English. If the XML column will contain
documents in many languages or in unsupported language, the language of the column to
be indexed should be set to neutral; you may have trouble searching with some text.

See the SQL Server Books Online help topics ‘Default full-text language Option’,
‘Column-Level Linguistic Analysis’, and ‘sp_fulltext_column’ for more information.

Modifying the ArcSDE MAXBLOBSIZE parameter for
ArcIMS Metadata Services
XML documents that contain metadata describing GIS resources may contain an image
or a reference to an image that illustrates the contents of the resource. When these XML

Appendix F—XML data storage 149

documents are published to an ArcIMS Metadata Service, a copy of the image is stored in
a BLOB column in the feature class associated with the service.

For metadata XML documents created using ArcCatalog, a small thumbnail image may
be embedded within the XML document. There should be no trouble publishing XML
documents containing these thumbnail images to a Metadata Service with the default
MAXBLOBSIZE setting for ArcSDE.

When a metadata XML document is published to a Metadata Service using ArcCatalog
and a thumbnail is not embedded within the document, the document’s content is
checked to see if there is a reference to an external image file. Specifically, the FGDC
metadata element Browse Graphic File Name is checked. If a file path or HTTP address
is found that references a JPEG image and ArcCatalog can access the image, the file will
be loaded into the Metadata Service as the document’s thumbnail. ArcCatalog will only
attempt to access the first JPEG image referenced in the metadata.

External image files referenced by a metadata document may be large. If the file is larger
than approximately one megabyte in size, publishing the document to the Metadata
Service may fail. You must adjust the default value of the MAXBLOBSIZE parameter in
ArcSDE if you want to support publishing larger images as thumbnails.

The MAXBLOBSIZE parameter is stored in the SDE_server_config table. Use the
sdeconfig command to modify SDE_server_config parameter values. The full syntax for
this command can be found in the ArcSDE Administration Command Reference. For
information on setting this parameter appropriately, see the section on managing BLOB
data in Chapter 3, ‘Configuring ArcSDE Application Servers,’ of Managing ArcSDE
Application Servers. You may also want to refer to Appendix D, ‘ArcSDE Initialization
Parameters,’ in the same guide.

ArcSDE XML columns database schema

Three ArcSDE system tables are used to manage XML columns: SDE_xml_columns,
SDE_xml_index_tags, and SDE_xml_indexes; these tables are owned by the SDE user.
ArcSDE also creates two additional tables for each XML column that are used to store
and index XML documents: the SDE_xml_doc and SDE_xml_idx tables; these tables are
owned by the user who owns the business table containing the XML column.

An example of the ArcSDE XML columns database schema is shown on the next page.

150 ArcSDE Configuration and Tuning Guide for SQL Server

When an XML column is added to an object, the column is recorded in an ArcSDE XML columns table. Information in this table is

used to create the XML document and index tables and to record information about their text indexes in the ArcSDE XML

indexes and index tags tables.

Appendix F—XML data storage 151

XML columns table (SDE_xml_columns)
When you add an XML column to a business table, a row is added to the XML columns
table.

The table’s columns are described below. The ArcSDE data type follows the column’s
name.

Column_id (SE_INT32)—The XML column’s identifier. The table’s primary key. This
value is assigned by ArcSDE at the time the XML column is created.

Column_name (SE_STRING)—The name of the column in the business table that is the
XML column.

Config_keyword (SE_STRING)—The SDE_DBTUNE configuration keyword whose
parameters determine how the XML document and the XML XPath index tables and text
indexes created on those tables are defined in the database. For more information on
SDE_dbtune keywords and their parameters, see Chapter 3, “Configuring dbtune storage
parameters” in this document.

Index_id (SE_INT32)—The identifier of the XPath index associated with the XML
column, if one exists. A foreign key to the XML indexes table.

Minimum_id (SE_INT32)—The value of the initial number used in the business table’s
XML column to identify individual XML documents.

Registration_id (SE_INT32)—The identifier of the business table containing the XML
column. A foreign key to the ArcSDE table registry.

Xflags (SE_INT32)—A value indicating if the original documents in the XML document
table are stored compressed or uncompressed. By default, documents are compressed;
compressed documents provide better performance.

XML index tags table (SDE_xml_index_tags)
An XML column may optionally have an XPath index, which lets people search the
content of a specific XML element or attribute in each document. The definition of which
elements and attributes are included in or excluded from each XPath index is recorded in
this table.

This table occurs once in each ArcSDE database. It contains one row for each XPath
associated with an XML column’s XPath index.

Description (SE_STRING)—Text identifying the content that should be contained in the
XML element or attribute.

Index_id (SE_INT32)—The identifier of the XPath index associated with an XML
column, if one exists. A foreign key to the XML indexes table.

Is_excluded (SE_INT32)—A value indicating if the XML element is included in or
excluded from the XPath index. A zero indicates the XPath is included; a one indicates
the XPath is excluded.

152 ArcSDE Configuration and Tuning Guide for SQL Server

Tag_alias (SE_INT32)—A number that may be used to identify an XPath. For example,
the Z39.50 communication protocol uses numeric codes to refer to content that may be
searched. This column is not used by the ArcIMS Z39.50 Connector.

Tag_id (SE_INT32)—The identifier of an XPath or tag.

Tag_name (SE_STRING)—An absolute XPath identifying an XML element or attribute
that may occur in an XML document. For example, /metadata/mdDateSt identifies an
XML element, and /metadata/dataIdInfo/tpCat/TopicCatCd/@value identifies an XML
attribute. These XPaths must not contain asterisks (*) to refer to a group of XML
elements or attributes—each elements or attribute is matched exactly using the XPaths
specified in this table.

XML indexes table (SDE_xml_indexes)
This table occurs once in each ArcSDE database. It contains one row for each XML
column that has an XPath index.

Description (SE_STRING)—Text identifying the XPath index. If an index definition file
was used to create the index, the index’s description may be specified at the top of the
file.

Index_id (SE_INT32)—The identifier of the XPath index. The table’s primary key.

Index_name (SE_STRING)—The name of the XPath index. For XPath indexes
associated with an ArcIMS Metadata Service, the name will be “ims_xml#” where # is
the identifier of the XML column in the Metadata Service’s business table.

Index_type (SE_INT32)—A value indicating the type of XPath index. With ArcSDE 9.1
the value will always be 2; only XPath indexes of the type
SE_XML_INDEX_DEFINITION are supported.

Owner (SE_STRING)—The database user who owns the XML column. For ArcIMS
Metadata Services, this is the user specified in the service’s ArcXML configuration file.

XML document table (sde_xml_doc<column_id>)
The ArcSDE database contains one of these tables for each XML column. The number in
the table name is the XML column’s identifier. This table contains one row for each
XML document stored in the XML column.

Doc_property (SE_INT32)—A value indicating if any conflicts were found when
adding the content of an XML document to the XPath index. A one indicates a conflict
was found, for example, when an element is supposed to be indexed numerically but the
document contains a string in that element instead. A NULL value indicates there were
no problems indexing the document.

Sde_xml_id (SE_INT32)—The identifier for an XML document stored in the XML
column. The primary key for the table.

Xml_doc (SE_BLOB)—The XML document.

Appendix F—XML data storage 153

Xml_doc_val (SE_BLOB)—The content of the entire XML document, with all XML
tags removed. A text index is built on this column by default; this index is used to
respond to full-text queries. For ArcIMS Metadata Services, this index is used to respond
to FULLTEXT requests.

XML XPath index table (sde_xml_idx<column_id>)
The ArcSDE database contains one of these tables for each XML column that has an
XPath index. The number in the table name is the XML column’s identifier. This table
contains one row for each XML element or attribute in each document that is included in
the XPath index.

Double_tag (SE_FLOAT64)—For XPaths that are indexed numerically, the number
contained in the element or attribute. For ArcIMS Metadata Services, this column is used
to respond to TAGVALUE requests.

Sde_xml_id (SE_INT32)—The XML document’s identifier. A foreign key to the XML
document table.

Tag_id (SE_INT32)—The identifier for the XML element or attribute that is indexed.
This number corresponds to the value in the tag_id column in the XML index tags table.

Text_tag (SE_CLOB)—For XML elements or attributes that are indexed as string, the
text contained in the element or attribute. A text index may optionally be built on this
column; this index is used to respond to XPath queries. For ArcIMS Metadata Services,
this index is used to respond to TAGTEXT requests.

Xml_key_column (SE_INT32)—The primary key for the table.

	ArcSDE Configuration and Tuning Guide for SQL Server
	Chapter 1: Getting started
	Configuring SQL Server
	Configuring dbtune storage parameters
	Managing tables, feature classes, raster columns, and views
	Connecting to SQL Server
	National language support
	Backup and recovery

	Chapter 2: Configuring SQL Server
	Introduction
	Installing and configuring Microsoft SQL Server
	Creating and managing databases and file groups
	Managing security

	Chapter 3: Configuring Dbtune storage parameters
	The SDE_dbtune table
	Understanding keywords
	Understanding parameter name--config string pairs

	Chapter 4: Managing tables, feature classes, raster columns, and views
	Setting up the dbtune table
	ArcSDE to Microsoft SQL Server data type mapping
	Importing data
	Managing data
	Exporting data
	Dropping data
	Defining ArcSDE views
	Choosing an ArcSDE log file configuration

	Chapter 5: Connecting to SQL Server
	Connection modes
	Making your first connection
	Using the ArcSDE direct connect driver

	Chapter 6: National language support
	SQL Server database collation designator
	Character encoding standards supported by ArcSDE

	Chapter 7: Backup and recovery
	Understanding backup and restore
	Backing up ArcSDE spatial databases
	Restoring and recovering ArcSDE spatial databases
	Managing transaction logs
	Moving data using backup and restore
	Moving data using sp_detach_db and sp_attach_db

	Appendix A: ArcSDE compressed binary
	Compressed binary
	The spatial grid index
	Indexes

	Appendix B: Storing raster data
	Raster schema

	Appendix C: The well-known binary representation
	Numeric type definitions
	XDR (big endian) encoding of numeric types
	NDR (little endian) encoding of numeric types
	Conversion between the NDR and XDR representations of WKB geometry
	Description of WKBGeometry byte streams
	Assertions for well-known binary representation for geometry

	Appendix D: Storing locators
	Locator schema

	Appendix E: Making a direct connection
	What files do you need?
	How to get your database setup files
	Environment variables
	Client/database compatibility
	Registration and authorization
	Setting up clients for SQL Server direct connect

	Appendix F: Storing XML Data
	Configuring ArcSDE for SQL Server
	ArcSDE XML columns database schema

