
ArcGIS
®

 9
ArcSDE® Configuration and Tuning Guide for Oracle®

Copyright © 1999, 2002–2005 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This work is protected under
United States copyright law and other international copyright treaties and conventions. No part of this work
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or by any information storage or retrieval system, except as expressly
permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New
York Street, Redlands, CA 92373-8100, USA.

The information contained in this document is subject to change without notice.

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is subject to the terms of the License
Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED
RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or
FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA.

ESRI, SDE, ArcView, ArcIMS, ArcInfo Librarian, MapObjects, ArcInfo, ArcSDE, ArcCatalog, ArcMap,
ArcToolbox, ArcStorm, ArcGIS, and Spatial Database Engine are trademarks, registered trademarks, or
service marks of ESRI in the United States, the European Community, or certain other jurisdictions. Other
companies and products mentioned herein are trademarks or registered trademarks of their respective
trademark owners.

Contents

Getting started 1
Tuning and configuring the Oracle instance 1
Arranging your data 2
Creating spatial data in an Oracle database 3
ArcSDE geodatabase maintenance 3
National language support 3
Backup and recovery 4

Essential Oracle configuring and tuning 5
How much time should you spend tuning? 5
Reducing disk I/O contention 6
Setting the Oracle initialization parameters 28
Enabling the optional Oracle startup trigger 31
Updating Oracle statistics 32
Updating ArcSDE compressed binary statistics 33

Configuring DBTUNE storage parameters 35
The DBTUNE table 36
Managing the DBTUNE table 38
Using the DBTUNE table 40
Defining the storage parameters 42
Arranging storage parameters by keyword 46
Oracle Spatial DBTUNE storage parameters 64
Oracle default parameters 68
Converting previous versions of SDE storage parameters into the DBTUNE table 69
The complete list of ArcSDE 9 storage parameters 72

Managing tables, feature classes, and raster columns 81
Data creation 81
Creating and populating raster columns 87
Creating views 87
Exporting data 88
Schema modification 88
Choosing an ArcSDE log file configuration 88
Using the ArcGIS Desktop applications 90
Efficiently registering large business tables with ArcSDE 94

iv ArcSDE Configuration and Tuning Guide for Oracle

National language support 99
Oracle database character sets 99
Setting the NLS_LANG variable on the client 99
Setting the NLS_LANG for the ArcSDE server 102

Backup and recovery 103
Recording database changes 103
Database backup 108
Database recovery 111

Estimating the size of your tables and indexes 113
The business table 113
The feature table 114
The spatial index table 115
The version delta tables 116
The network tables 117
The raster data tables 120
The indexes 123

Storing raster data 125
Raster schema 128

ArcSDE compressed binary 137
Compressed binary 137
The spatial grid index 140
Creating tables with compressed binary schema 146
Tuning LOB storage 147
Referential integrity 148

Oracle Spatial geometry type 149
What is Oracle Spatial? 149
How does ArcSDE use Oracle Spatial? 151
How ArcSDE uses existing Oracle Spatial tables 156
Interoperability considerations 158

The well-known binary representation 163
Numeric type definitions 164
XDR (big-endian) encoding of numeric types 164
NDR (little-endian) encoding of numeric types 164
Conversion between the NDR and XDR representations of WKB geometry 164
Description of WKBgeometry byte streams 165
Assertions for well-known binary representation for geometry 169

Contents v

Storing locators 171
Locator schema 172

Making a direct connection 181
What files do you need? 181
How to get your database setup files 182
Environment variables 183
Client/Database compatibility 185
Registration and authorization 185
Setting up clients for Oracle direct connect 185

Storing XML Data 189
Configuring ArcSDE for Oracle 190
ArcSDE XML columns database schema 198

Index 205

C H A P T E R 1

Getting started

Creating and populating a geodatabase is arguably a simple process,

especially if you use ESRI’s ArcCatalogTM or ArcToolboxTM to load the

data. So why is there a configuration and tuning guide? Well, while

database creation and data loading can be relatively simple, the resulting

performance may not be acceptable. It requires some effort to build a

database that performs optimally. Also, as an Oracle® user, you have

some choices for storing the geometry of your spatial data.

This book provides instruction for configuring the physical storage

parameters of your data in the database management system (DBMS), as

well as information about the available options you have to store the

geometry. This book also provides some important guidelines for

configuring and tuning the Oracle instance itself.

Tuning and configuring the Oracle instance
Building an efficient geodatabase involves properly tuning and configuring the Oracle
instance and proper arrangement and management of the database’s tables and indexes.
Chapter 2, ‘Essential Oracle configuring and tuning’, teaches you how to do just that.

Chapter 2 lists the necessary steps to create a geodatabase. You will learn how to
properly:

• Create an Oracle database.

• Create the tablespaces that will store your tables and indexes.

2 ArcSDE Configuration and Tuning Guide for Oracle

• Tune the Oracle instance that will mount and open the database.

• Manage the optimization statistics of the tables and indexes after they have been
created and populated.

Arranging your data
Every table and index created in a database has a storage configuration. How you store
your tables and indexes affects your database’s performance.

DBTUNE storage parameters
How is the storage configuration of the tables and indexes controlled? ArcSDE® reads
storage parameters from the SDE.DBTUNE table to define physical data storage
parameters of ArcSDE tables and indexes. The storage parameters are grouped under
configuration keywords. You assign configuration keywords to your data objects (tables
and indexes) when you create them from an ArcSDE client program.

The initial source of storage parameters is the dbtune.sde file found under the ArcSDE
etc directory. When the ArcSDE sdesetupora* setup command executes, the
configuration parameters are read from the file and written into the DBTUNE table.

Most ArcSDE storage parameters are configuration strings and represent the entire
storage configuration for a table or index. Most SDE.DBTUNE storage parameters hold
the parameters of an Oracle CREATE TABLE or CREATE INDEX statement.

The sdedbtune command provides the ArcSDE administrator with an easy way to
maintain the SDE.DBTUNE table. The sdedbtune command exports and imports all the
records of the SDE.DBTUNE table to a file in the ArcSDE etc directory.

The ArcSDE installation creates the SDE.DBTUNE table. If the dbtune.sde file is absent
or empty, sdesetupora* creates the SDE.DBTUNE table and populates it with default
configuration keywords representing the minimum ArcSDE configuration.

In almost all cases, you will populate the SDE.DBTUNE table with specific storage
parameters for your database. Chapter 3, ‘Configuring DBTUNE storage parameters’,
describes in detail the SDE.DBTUNE table and all possible storage parameters and
default configuration keywords.

Spatial data storage choices
The SDE.DBTUNE storage parameter GEOMETRY_STORAGE allows you to choose
from three possible spatial column storage formats.

The three possible storage formats are:

• ArcSDE compressed binary with LONG RAW. The ArcSDE geometry is stored in a
‘LONG RAW’ column in a separate feature table. A business table’s spatial column
is a foreign key reference to the records of a feature table. This is the default spatial
storage format for ArcSDE.

Chapter 1—Getting started 3

• ArcSDE compressed binary with binary large object (BLOB). The schema of this
storage format is the same as the previous one except that the geometry is stored in
the BLOB data type.

• Oracle Spatial geometry type. The object-relational model extends the database
model to include an SDO_GEOMETRY type. Under this storage format, the spatial
column is an SDO_GEOMETRY data type, and no foreign key reference to another
table storing a geometry column is required.

These spatial storage choices are discussed more fully later in this book.

Appendix C, ‘ArcSDE compressed binary’, describes the ArcSDE compressed binary for
both LONG RAW and BLOB.

Appendix D, ‘Oracle Spatial geometry type’, describes ArcSDE support for the Oracle
Spatial storage format.

Creating spatial data in an Oracle database
ArcCatalog and ArcToolbox are graphical user interfaces (GUIs) specifically designed to
simplify the creation and management of a spatial database. These applications provide
the easiest method for creating spatial data in an Oracle database. With these tools you
can convert existing ESRI® coverages and shapefiles into ArcSDE feature classes. You
can also import an existing ArcSDE export file containing the data of a business table,
feature class, or raster column.

Multiversioned ArcSDE data can be edited directly with the ArcMapTM GUI.

An alternative approach to creating spatial data in an Oracle database is to use the
administration tools provided with ArcSDE.

Chapter 4, ‘Managing tables, feature classes, and raster columns’, describes the methods
used to create and maintain spatial data in an Oracle database.

ArcSDE geodatabase maintenance
Periodically the administrator must perform various maintenance tasks on the ArcSDE
geodatabase to maintain performance. Tasks, such as updating table and index statistics,
rebuilding out of balance indexes, and compressing the states table, are discussed.

National language support
If you intend to support a database that does not use the Oracle default character set, you
will have to take a few extra steps when creating the Oracle database. You will also need
to set the national language system environment of the client applications.

Chapter 5, ‘National language support’, describes how to configure the Oracle database
and set up the application environment.

4 ArcSDE Configuration and Tuning Guide for Oracle

Backup and recovery
Developing and testing a backup strategy is every bit as important as the effort put into
creating the database. A good backup strategy protects the database in the event of a
media failure.

Chapter 6, ‘Backup and recovery’, lists the ArcSDE files that must be included as part of
the regular Oracle backup. In addition, suggested Oracle reference materials are listed for
further reading.

C H A P T E R 2

Essential Oracle configuring
and tuning

The performance of an ArcSDE service depends on how well you

configure and tune Oracle. This chapter provides basic guidelines for

configuring an Oracle database for use with ArcSDE. It assumes that you

have a basic understanding of the Oracle data structures, such as

tablespaces, tables, and indexes, and that you are proficient with

Structured Query Language (SQL). Refer to Oracle’s extensive

documentation, in particular Oracle Database Administrator’s Guide,

Oracle Concepts Guide, and Oracle Database Performance Tuning

Guide and Reference, for your Oracle release.

How much time should you spend tuning?
The importance of having a well-tuned database depends on how it is used. A database
created and used by a single user does not require as much tuning as a database that is in
constant use by many users. The reason is quite simple—the more people using a
database, the greater the contention for its resources.

By definition, tuning is the process of sharing available resources among users by
configuring the components of a database to minimize contention and maximize
efficiency. The more people you have accessing your databases, the more effort is
required to provide access to a finite resource.

A well-tuned Oracle database makes optimum use of available central processing unit
(CPU) time and memory while minimizing disk input/output (I/O) contention. Database
administrators approach this task knowing that each additional hour spent will often
return a lesser gain in performance. Eventually, they reach a point of diminishing returns
when it becomes impractical to continue tuning; instead, they continue to monitor the
database and address performance issues as they arise.

6 ArcSDE Configuration and Tuning Guide for Oracle

Reducing disk I/O contention
Although disk I/O contention has been alleviated through the advancement of hardware
technology, it remains an important consideration to the database administrator. Disk I/O
contention within an Oracle database is minimized by properly arranging the components
of the database throughout the file system. Ultimately, the database administrator must
reduce the possibility of one process waiting for another to complete its I/O request. This
is often referred to as “waiting on I/O”.

Creating a database using the Oracle installer
Before installing Oracle and creating the database, decide where to position the software
and the files of the Oracle database. The Oracle installer program will request this
information.

If you have already installed Oracle and created your database files, you should still read
the sections that follow. Although it involves more effort, you can move the Oracle
database files after they have been created.

Defining the database’s components and their size
The physical components of an ArcSDE service and the underlying Oracle database, as
they exist on any given file system, include the ArcSDE and Oracle software and all of
the physical files (data files, redo log files, and control files) of the Oracle database. Each
of the components is described below.

Software

The software includes both Oracle and ArcSDE. The ArcSDE software occupies
approximately 60 MB of space. The disk space occupied by the Oracle software varies
depending on the version of Oracle and products you choose to install. Please see your
Oracle installation notes for further details.

Control files

The control files maintain an inventory of the overall physical architecture of an Oracle
database. During the creation of the database, specify at least three control files on
different disk drives. If a disk containing a control file fails, the Oracle server must be
shut down. Recovery is accomplished by reconfiguring Oracle to use only copies of
good—uncorrupted and current—control files. It is essential that control files be placed
on physically separate disks so that a disk failure does not cause the loss of all control
files.

Note: The ability of an Oracle database to recover after loss of a control file depends
upon the existence of identical, current copies of the lost control file. ESRI does not
recommend operating ArcSDE under Oracle without having multiple control files on
physically separate disk drives.

Chapter 2—Essential Oracle configuring and tuning 7

Control files are dynamic and initially require about 4 MB of disk space and can grow to
more than 10 MB depending on the activity of your database.

The initialization parameter CONTROL_FILE_RECORD_KEEP_TIME controls the
size of the control files. By default, this parameter is set to 7—instructing Oracle to
overwrite its reusable section every seven days. For more information on initialization
parameters, refer to ‘Setting the Oracle initialization parameters’ later in this chapter.

Online redo log files

The online redo log files record the changes made to the database. Oracle requires a
database to have at least three online redo log file groups present.

An Oracle database that receives regular edits (inserts, updates, or deletes) has highly
active online redo log files. Writes to the current online redo log file occur according to
the following schedule:

• The log buffer becomes one-third full.

• Any session issues a commit.

• Every three seconds if the buffer cache contains nonlogged dirty blocks.

It is important to physically separate the online redo log files from other data files that
also experience high rates of I/O. Whenever possible, create the log files on their own
disk drives or with other relatively static files.

Each time a log file fills up, a log file switch occurs and Oracle begins writing to the next
log file. When a log switch occurs, all log files in a log file group are closed, all log files
in the next group are opened, and a checkpoint occurs. Checkpoints help ensure the
success of database recovery by establishing a starting point that reflects a consistent state
of the database. Frequent checkpoints reduce the amount of time taken to recover a
database. However, checkpoints are costly operations and should not occur too
frequently. This can be done by choosing suitable values for size of the redo log files and
the initialization parameters: LOG_CHECKPOINT_INTERVAL,
LOG_CHECKPOINT_TIMEOUT, and FAST_START_MTTR_TARGET and setting
the size of the redo log file so that it does not fill before the
LOG_CHECKPONT_INTERVAL or LOG_CHECKPONT_TIMEOUT occurs. See
Chapter 6 of this manual for details.

The size and number of online redo log files in your database depend on the type of
database. This section will describe three basic kinds of databases:

• A newly created database.

• An Online Transaction Processing (OLTP) database. A multiversioned ArcSDE
database that is constantly edited while it is being queried is an example of an OLTP
database.

• A read-only database, meaning a database that, once loaded, receives changes at
posted intervals. An ArcIMS® database is an example of a read-only database.

8 ArcSDE Configuration and Tuning Guide for Oracle

Establishing a new spatial database

With the vast amount of spatial data available as coverage and shapefile format, many
spatial databases are mass populated immediately following their creation. For this type
of database, create three log file groups each containing at least one large redo log file. If
possible, place all log files on a disk drive separate from all other data files. In this
situation, it is not unreasonable to create log files in excess of 1 GB.

After you have finished loading the data, connect to Oracle as the database administrator
(DBA) and issue a checkpoint with ALTER SYSTEM CHECKPOINT. Then create new,
smaller log files. The size and number of the log files depend on what kind of database it
will become, either OLTP or read-only (see below).

When loading a database you may turn off archiving. You obtain a performance gain by
eliminating the periodic copy to the archive log destination following a log switch. It is
just as easy to recover the database from your load scripts and source data as it is to
reapply the changes stored in the archive logs. Remember to turn archiving on after the
database has been loaded if it is going to be an OLTP database.

OLTP database

For these types of databases, the redo log files should be large enough to ensure that the
checkpoint is not a frequent occurrence. Redo log files should also be mirrored to provide
maximum protection against loss of transaction data.

If you are archiving the redo log files, create three to 10 redo log file groups having log
files about 50 MB in size. If possible, place them on disk drives that experience very low
I/O. The archive log file destination should also be placed on a separate disk drive to
ensure that disk failure does not cause the simultaneous loss of the active redo log files
and the archived redo log files.

If you are not going to archive your log files, your total space given to redo log files
should be enough to store all log entries generated between full database backups.
Depending on the size of the redo log files and the amount of redo log entries created by
changes to the database, there is always a chance that all redo logs will fill before they are
backed up, reducing chances for complete database recovery.

Note: ESRI does not recommend that NOARCHIVELOG be the normal operating mode
of an OLTP database due to the risk of losing committed transactions in the event of
media failure.

In either case, you should mirror the online redo log files. Place the mirror copy of the
online redo log file on a physically separate disk drive from the original copy.

Read-only databases

Some ArcSDE databases become relatively static following their creation. Such
databases receive posted intervals of changes over their lifetime. For this type of
database, create three 50 MB online redo log files. Since they’re used infrequently,
positioning is not as critical as for the other two types of databases just described.

Chapter 2—Essential Oracle configuring and tuning 9

Monitoring the log files

For all three types of databases, connect as the SYSTEM user and issue the following
query to determine if your online redo log files are large enough and if the checkpoint
frequency is occurring at a desirable interval:

SELECT TO_CHAR(FIRST_TIME,'dd-mon-yy hh24:mi:ss') FROM V$LOGHIST;

This is an example of the output:

TO_CHAR(FIRST_TIME)

04-nov-99 13:15:14
04-nov-99 13:21:04
04-nov-99 13:27:04
04-nov-99 13:32:36

The example output shows the log switches are occurring at intervals greater than five
minutes, the interval at which Oracle issues the checkpoints. If the interval was less than
five minutes, the DBA should consider increasing the size of the online redo log files.

Modifying the online redo log files

To change the size of the redo log files, you must create new log file groups of the correct
size and drop old log file groups that are the wrong size. You may only drop a log file
group that is INACTIVE. Oracle requires that you always have at least two log file
groups.

Follow this procedure using the SQL statements listed below.

0. Determine which of the existing log file groups is current:

SELECT GROUP#, STATUS FROM V$LOG;

GROUP# STATUS
--------- ----------------
 1 INACTIVE
 2 INACTIVE
 3 CURRENT

0. Add at least three new log file groups with their new size by executing this statement
three times:

ALTER DATABASE ADD LOGFILE
('<path to log file member1>','<path to log file member2>',...)
SIZE <size>;

ALTER DATABASE ADD LOGFILE ... ;

ALTER DATABASE ADD LOGFILE ... ;

SELECT GROUP#, STATUS FROM V$LOG;

GROUP# STATUS
--------- ----------------
 1 INACTIVE
 2 INACTIVE
 3 CURRENT

10 ArcSDE Configuration and Tuning Guide for Oracle

 4 INACTIVE
 5 INACTIVE
 6 INACTIVE

Note: ESRI recommends that you always mirror the online redo log file groups across
physically separate disk drives.

0. Execute the correct number of manual log switches required to make the first log file
group current.

ALTER SYSTEM SWITCH LOGFILE;

SELECT GROUP#, STATUS FROM V$LOG;

GROUP# STATUS
--------- ----------------
 1 INACTIVE
 2 INACTIVE
 3 ACTIVE
 4 CURRENT
 5 INACTIVE
 6 INACTIVE

0. If the database is running in ARCHIVELOG mode, the log file will have an
ACTIVE status until the archive process for that file has completed. If a redo log
group to be dropped has an ACTIVE status, you may force the archive to occur with
the ALTER SYSTEM ARCHIVE LOG GROUP command.

ALTER SYSTEM ARCHIVE LOG GROUP 3;

SELECT GROUP#, STATUS FROM V$LOG;

GROUP# STATUS
--------- ----------------
 1 INACTIVE
 2 INACTIVE
 3 INACTIVE
 4 CURRENT
 5 INACTIVE
 6 INACTIVE

0. Remove the old log file groups, identifying them by their group numbers.

ALTER DATABASE DROP LOGFILE GROUP 1;

ALTER DATABASE DROP LOGFILE GROUP 2;

ALTER DATABASE DROP LOGFILE GROUP 3;

SELECT GROUP#, STATUS FROM V$LOG;

GROUP# STATUS
--------- ----------------
 4 CURRENT
 5 INACTIVE
 6 INACTIVE

Chapter 2—Essential Oracle configuring and tuning 11

Tablespace data files
The tablespace represents Oracle’s logical storage container. Each tablespace has one or
more physical data files assigned to it.

System tablespace

The system tablespace stores Oracle’s data dictionary. Each time Oracle parses a SQL
statement, it checks the data dictionary for metadata concerning data objects referenced
by the statement. Among other things, Oracle ensures the data objects actually exist and
the user has the proper privileges.

If possible, place the SYSTEM tablespace on a disk of low to moderate activity.

Undo tablespaces

The undo tablespaces store undo segments, which maintain the undo image needed to roll
back aborted transactions. Undo segments also provide read consistency for queries
started prior to another session’s transaction.

Determine the storage parameters of the undo tablespace and the undo segments by the
type of transactions using them. ArcSDE has three basic categories of transactions.

The AUTOCOMMIT interval—Initial loading of data into an ArcSDE database
generally entails converting an ArcSDE coverage, shapefile, ArcSDE export file, or a
data vendor’s format into an ArcSDE feature class.

To avoid exceeding the undo space, ArcSDE provides a commit interval, a threshold that
causes inserts, updates, or deletes to be committed. The commit interval also serves to
regulate transaction size. The commit interval defaults to 5,000 features and is set with
the ArcSDE server configuration AUTOCOMMIT parameter.

Refer to Managing ArcSDE Application Servers for more information on the
AUTOCOMMIT parameter and how to set it.

Managing the large transactions of the multiversion geodatabase compress—
Perodically, the ArcSDE administrator is required to compress the states of a
multiversioned database. To guarantee the consistency of the geodatabase, compress
transactions potentially grow to a large size. Therefore, for Oracle databases configured
with automatic undo space management, make sure the UNDO_POOL is not set too low
for the SDE user and that enough undo tablespace exists to complete the compress.

Alternatively, if you are manually controlling the undo space using rollback statements,
you should create a separate rollback tablespace that is large enough to hold the
transactions of the compress operation, and assign one rollback segment to it. The size of
the tablespace and the inherent rollback segment required to store the before image of the
compress transactions depends on the number of states that will be deleted during the
compress. As a rule of thumb, you should start with a rollback segment that is at least
300 MB. However, if the editing environment is extremely active or you infrequently
compress the database, a much larger rollback segment may be required. Set the name of
this rollback segment in the COMPRESS_ROLLBACK_SEGMENT storage parameter
of the DEFAULTS DBTUNE configuration keyword. If this parameter is not set, the

12 ArcSDE Configuration and Tuning Guide for Oracle

next available online rollback segment will be used. If the rollback segment is not large
enough, the compress operation will fail since the transaction will be forced to roll back.

Managing undo space for online geodatabase transactions—As a rule, if you find that
your transactions are rolled back because your undo space fills up, you should reduce the
size of your transactions or increase the size of the undo tablespace. Large transactions
delay recovery, increase overhead for queries that must access them for read consistency,
and increase overhead for other transactions that must allocate additional extents.
ArcSDE allows you to limit the size of your transactions by setting the AUTOCOMMIT
server configuration parameter.

Temporary tablespace

An Oracle server process writes to a segment of temporary tablespace whenever it
performs a sort or hash join that exceeds the memory allocated to the Oracle program
global area (PGA) by the PGA_AGGREGATE_TARGET initialization parameter. Sorts
occur when indexes are created (Oracle: CREATE INDEX statement), statistics are
generated (ANALYZE statement), and queries require on-the-fly sorting (SELECT
statements that include table joins, ORDER BY clauses, and GROUP BY clauses).

Note: Oracle uses the PGA_AGGREGATE_TARGET to allocate memory for sorting
only if the WORKSPACE_POLICY is set to AUTO. If it is not, Oracle will use the older
manual method of managing sort area which included setting the SORT_AREA_SIZE
and HASH_AREA_SIZE parameters.

When establishing a new database, the temporary tablespace will need to be large enough
to create the indexes. Oracle requires twice as much temporary space to create the
indexes as it does to store it.

If you are using the ArcSDE compressed binary format to store your spatial data, the
S<n>_IX1 index on the spatial index table is likely to be your largest index. Another
candidate is the raster block’s table index for a large raster stored in the ArcSDE
geodatabase. Refer to Appendix A, ‘Estimating the size of your tables and indexes’, for
information on determining the size of your indexes.

If you are storing your spatial data as an Oracle Spatial data type, refer to Appendix A,
‘Tuning Tips and Sample SQL Scripts’, of the Oracle Spatial User’s Guide and
Reference for more information on sizing temporary tablespace for the construction of
the Oracle Spatial data type indexes.

After the data has been loaded and the indexes created, temporary tablespace is used for
data sorts. Temporary tablespace is used when sorts exceed the maximum PGA shared
space managed through the Oracle PGA_AGGREGATE_TARGET initialization
parameter.

The temporary tablespace can be mixed with other data files of higher I/O since there is a
low risk of disk I/O contention.

The Oracle Database Configuration Assistant creates the temporary tablespace for you.
Make sure the total size of the tablespace is large enough to create your largest index.

Chapter 2—Essential Oracle configuring and tuning 13

If for some reason you must re-create the temporary tablespace, use a SQL CREATE
TEMPORARY TABLESPACE statement similar to the following:

CREATE TEMPORARY TABLESPACE temp
 TEMPFILE 'C:\oradata\temp01.dbf' SIZE 300M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M;

ArcSDE system tablespaces

The ArcSDE system tablespaces store the ArcSDE and geodatabase system tables and
indexes created by the ArcSDE sdesetupora* command. The number and placement of
the tablespaces depend on the intended use of the ArcSDE database.

The placement of these tables and their indexes is controlled by the storage parameters of
the DBTUNE DATA_DICTIONARY configuration keyword. The
DATA_DICTIONARY keyword is used exclusively for the creation of the ArcSDE and
geodatabase system tables.

Multiversioned databases that support ArcGIS® OLTP applications have a highly active
state tree. The state tree maintains the states of all editing operations that have occurred
on tables registered as multiversioned. Four ArcSDE system tables—STATES,
STATE_LINEAGES, MVTABLES_MODIFIED, and VERSIONS—maintain the
transaction information of the versioned database’s state tree. In this type of environment,
these four tables and their indexes have their own DATA_DICTIONARY configuration
keyword storage parameters.

In an active multiversioned database, the STATES_LINEAGE table can easily grow
beyond one million records, occupying more than 26 MB of tablespace. The STATES
table is much smaller, storing approximately 5,000 records, occupying approximately
2 MB of tablespace. The MVTABLES_MODIFIED table typically has approximately
50,000 records occupying approximately 1 MB of tablespace. The VERSIONS table is
usually quite small with less than 100 rows occupying approximately 64 KB.

For highly active editing ArcGIS applications, the STATES, STATES_LINEAGE, and
MVTABLES_MODIFIED tables and their indexes need to be created in separate
tablespaces and positioned across the file system to minimize disk I/O contention.

If you are not using a multiversioned database, the aforementioned tables are dormant, in
which case the tables can be stored with the other ArcSDE system tables and indexes.

The remainder of the ArcSDE and geodatabase system tables store information relating
to schema changes. They are relatively small and have a low frequency of I/O. They
should be grouped together and positioned with other tablespaces of high activity.

To summarize, if you are creating an active multiversioned database, create a 70 MB
tablespace to store ArcSDE tables. On a separate disk drive create a 30 MB tablespace
for the indexes.

If you are not going to use a multiversioned database, reduce the extent sizes of the
STATE_LINEAGES, STATES, and MVTABLES_MODIFIED tables and their indexes
to 40 KB.

14 ArcSDE Configuration and Tuning Guide for Oracle

For more information about the DATA_DICTIONARY configuration keyword, see
Chapter 3, ‘Configuring DBTUNE storage parameters’.

Business table and index tablespaces

The Oracle installation creates the USER tablespace as the default user tablespace. There
is no requirement by Oracle that you use the USER tablespace, and you may drop it if
you want. If you are building a sizable, permanent spatial database, create tablespaces
with names reflecting the data they will store.

The B_STORAGE DBTUNE storage parameter holds business table storage parameters.

The 15 MB INDX tablespace created by the Oracle installation process can be used to
store indexes. However, for large spatial databases you will need to create index
tablespaces whose name and size reflect the indexes they store. You may drop the
Oracle-generated INDX tablespace if you do not intend to use it.

The B_INDEX_USER DBTUNE storage parameter holds the storage parameters of the
business table indexes that you create.

A note about RAID storage devices
RAID, short for Redundant Array of Inexpensive Disks, is a method whereby
information is spread across several disk drives to reduce latency, increase data
availability, and/or improve data safety. In RAID storage, two or more physical disk
drives are combined into one physical configurable device. RAID storage operates in
various modes identified as RAID 0, RAID 1, RAID 4, RAID 5, and RAID 10.

With RAID 0, also called “stripe mode”, data may be spread over multiple disks. The
first 4 KB might be written to disk 0, the second 4 KB block to disk 1, the third to disk 2,
and so on. Data is distributed back to disk 0 after disk N is written. RAID 0 may be faster
during sequential reads and sequential writes since successive blocks can be read or
written nearly in parallel across multiple disks. However, RAID 0 provides no extra data
safety since there is no duplication of any data.

RAID 1 provides an exact duplicate of the file information maintained on each disk.
RAID 1 can be used on two disks with zero or more spare disks. RAID 1 protects data
through redundancy; however, it is always slower to write since the data must be written
to at least two locations.

RAID 4 is similar to RAID 1 except that one disk stores parity information and not
duplicate data. There need be only one parity disk to protect any number of data disks.
However, since the disk holding parity data will always be written to, it will become a
bottleneck on writes. Like RAID 1, RAID 4 is also slower on writes because two
physical blocks—the data block and the parity block—must be written for each logical
block sent. The disk holding the parity data becomes a bottleneck since all data writes
will affect this disk.

RAID 5 may be the most useful mode, since it eliminates the bottleneck of RAID 4 but
still provides data protection. In RAID 5, parity information is distributed evenly among
the participating disk drives.

Chapter 2—Essential Oracle configuring and tuning 15

RAID 1+0 is also useful. A group of drives is duplicated, akin to RAID 1, and the
resulting group is striped, akin to RAID 0. The real benefit of this arrangement lies in the
duplication, which provides data protection.

While RAID 1, RAID 1+0, and RAID 5 provide an additional level of protection, ESRI
does not recommend relying solely on a disk configuration for safeguarding data. ESRI
recommends implementing and testing a database backup strategy that copies the
appropriate Oracle files to a safe offline location. As discussed in Chapter 6, this should
be accomplished immediately after installing a new ArcSDE database.

Arranging the database components
Minimizing disk I/O contention is achieved by balancing disk I/O across the file
system—positioning frequently accessed “hot” files with infrequently accessed “cold”
files. Estimate the size of all the database components and determine their relative rates
of access. Position the components given the amount of disk space available and the size
and number of disk drives. Diagramming the disk drives and labeling them with the
components help keep track of the location of each component. Have the diagram handy
when you create the Oracle database.

Establish a maximum data file size

Choose the maximum size of a data file. It is a good policy to set a maximum size limit
for your data files because doing so facilitates interchanging them and helps ensure that
files can be copied to your backup medium.

After the database has been in use for some time and a “normal” pattern of usage has
been established, heavily accessed data files sharing the same disk drive need to be
separated. They can only be interchanged with medium- or low-accessed data files of a
similar size (unless you have a lot of free space on your disk drives).

Check your operating system documentation for further details on maximum data file
size.

Determine the size of the tables and indexes

To determine the sizes of tables and indexes stored in an ArcSDE database, refer to the
formulas listed in Appendix A, ‘Estimating the size of your tables and indexes’.

Store tables and indexes by access

Decide which tables to store together in the same tablespace based on expected access.
Ideally, storage should be distributed as broadly as possible, to spread out the file access
load.

Locally managed tablespaces

Starting in Oracle9i, all tablespaces are locally managed by default. A locally managed
tablespace offers faster access for data storage since lookups in the data dictionary are
avoided. Tablespace management is accomplished by including a bit map at the head of
each data file indicating which segments are allocated and which are free. The bit map is
based on a specified minimum size of an extent.

16 ArcSDE Configuration and Tuning Guide for Oracle

You should create tablespaces that contain a single table or index according to the size of
the table or index they contain. A tablespace may be so large that it requires several data
files. If the tablespace is locally managed you should add about 1 MB of extra space in
each data file to accommodate the segment allocation bit map.

For example, if a tablespace must store a table or index that will grow to 7 GB and the
maximum data file size allowed is 2 GB, the tablespace should include three, 2 GB data
files and one data file that is somewhat larger than 1 GB.

Because the extent bit map takes about 1 MB of space in each data file, a data file of
2,048 MB will contain 2,047 MB of usable space. Extent allocation in this tablespace
should not be done with segment sizes of 1,024 MB, but slightly smaller, say 1,023 MB,
so that two extents plus the bit map will fit into the file.

Example:

create tablespace roads datafile '/gis1/oradata/roads1.dbf' size 2048M
extent management local uniform size 1023M;

alter tablespace roads add datafile '/gis2/oradata/roads2.dbf' size 2048M;

alter tablespace roads add datafile '/gis3/oradata/roads3.dbf' size 2048M;

alter tablespace roads add datafile '/gis4/oradata/roads4.dbf' size 1024M;

Find the sum of the sizes of the objects you will store together, to determine the size of
their tablespaces. If you expect the table or index to grow in the future, be sure to allow
for this as well.

Positioning the files

Once you have estimated the size of the data files, determine where to position them on
the file system. This section provides a list of guidelines that you may not be able to
follow in its entirety, given the number and size of your disk drives. The guidelines have
been listed in order of importance—from the greatest to the least.

Store the online redo log files on their own disk drive. In a database that is frequently
edited, the online redo log files are the most active in terms of I/O. If you cannot position
them on their own disk drive, store them with other files that experience relatively low
rates of I/O.

Keep the UNDO tablespace files separate from the redo log files. The undo segments are
frequently accessed when a database is edited. Try to separate these data files from other
highly active data. Doing so improves the rate at which Oracle is able to process
transactions.

Position the system tablespace data file with other data files that experience high I/O
activity. The access to these data dictionary tables is moderately low because their data is
cached in the shared pool and the buffer cache.

Position your business table and index data files according to their expected I/O. If you
expect a particular data file to experience a high degree of I/O, try to position it alone on
its own disk drive or with other data files of low to moderate activity.

Chapter 2—Essential Oracle configuring and tuning 17

The spatial index table of the ArcSDE compressed binary storage format is written to
whenever new features are added to a feature, but the table is never read. The spatial
index table’s S<n>_IX1 index is a covering index; therefore, Oracle reads the values
from the index and never accesses the table. Since the table is never read from, the I/O is
low, so the positioning of this table is unimportant.

Repositioning data files

After the database has been in use for a while, you can examine the reads and writes to
the data files with the following query:

select vd.name, vs.phyrds, vs.phywrts
from v$datafile vd, v$filestat vs
where vs.file# = vd.file#;

If you find that some disk drives are receiving a higher percentage of the I/O than others,
you can balance the I/O by repositioning the data files. The data files are repositioned by
shutting down the Oracle instance, performing a full backup, and moving the files using
operating system commands to copy them from one disk to another. Using SQL*Plus,
the instance is started, and the database is mounted but not opened:

startup mount

Before the database can be opened, you must update the control files with the new
locations of the data files using the alter database statement:

alter database rename datafile 'old name' to 'new name';

Once all of the new locations have been entered, you may open the database.

alter database open;

Creating the database
The database should be created after the location of the database files has been
determined. At the very least, you should assign the locations for the undo, temporary,
and system tablespace data files; the control files; and online redo log files.

Once you have mapped out how you want the files to be arranged on disk, create the
database.

First, you must install the Oracle and ArcSDE software.

Refer to the Oracle installation guide for instructions on installing the Oracle software
and the ArcSDE installation guide for instructions on installing the ArcSDE software.

The Oracle installation provides you with the opportunity to create the Oracle database
following the installation of the software. If you elect to do so, choose the custom
database option so that you can position the Oracle files on the disks according to your
layout.

The database creation scripts are not generated automatically. Instead, you are given the
choice of generating the scripts and creating the database later or creating the database
immediately without creating the scripts. If you want the scripts available as a record of

18 ArcSDE Configuration and Tuning Guide for Oracle

how the database was created, then you will have to generate the scripts and run them
following the completion of the installation process.

The control files, online redo log files, and Oracle database tablespaces (system, undo,
and temporary) are created during the Oracle installation process. The USER and INDX
tablespaces created by the Oracle installation process may be dropped if you do not want
to use them.

Setting the data block size

During the installation process, you will have the opportunity to set the data block size for
the database. Data blocks are the Oracle atomic unit of data transfer. The database block
size is the standard block size, the block size of the system tablespace, and the default
block size of any other tablespace unless a nonstandard block size is specified. Oracle
supports up to four nonstandard block sizes. After a database has been created, you
cannot change the database block size.

The recommended database data block size for ArcSDE applications is 16 KB.

Creating the business and index tablespaces

Once you have completed the installation of Oracle, create the tablespaces that store your
tables and indexes. You may want to write a SQL script and execute it as the SYSTEM
user within SQL*Plus. Alternatively, you could use the graphical user interface of the
Oracle Enterprise Manager’s Storage Manager to perform this task.

Creating the Oracle SDE user space
During the installation of ArcSDE, you will create the Oracle SDE user and the SDE
user’s default tablespace, to store the geodatabase system tables.

Note: The SDE user and its tablespace should only be used to manage and store ArcSDE
system metadata. You should create separate users to store your ArcSDE data objects
such as feature classes and raster datasets. You should not store these objects as the SDE
user or in the SDE user’s tablespace, since you could possibly crash the ArcSDE
application server by filling up the SDE user’s tablespace. Following the practice of
storing only SDE metadata in the SDE user schema simplifies the management of
ArcSDE.

Updating the storage parameters of the DATA_DICTIONARY keyword

Update the storage parameters of the DATA_DICTIONARY configuration keyword in
the dbtune.sde file. (On UNIX® systems this file is located in the SDEHOME/etc
directory. On Windows systems, the install shield will prompt you for the location of this
file. Refer to the ArcSDE for Oracle Installation Guide for more information.) Set the
extent sizes and the names of the tablespaces in which the geodatabase system tables will
be stored. The geodatabase system tables are created by the ArcSDE sdesetupora*
administration command.

Chapter 2—Essential Oracle configuring and tuning 19

Setting the SDE log file pool

ArcSDE provides log files for the temporary storage of key lists of table rows.
Applications use ArcSDE log files to maintain such things as selected lists of records.

Starting at ArcSDE 9 a pool of log file tables may be created in the SDE user’s schema
and checked out by other users. With this new feature, it is now possible to create users
that do not own log file tables since they can borrow those owned by the SDE user.

If you decide to create a Spatial Database Engine™ (SDE®) log file pool, you will need to
consider the space required for these tables. The server configuration parameter
SESSIONLOGPOOLSIZE regulates the number of log file tables created in the pool.

Setting the SESSIONLOGPOOLSIZE server configuration parameter greater than 0 will
cause the log file data tables to be created in the SDE user’s schema. You must create a
tablespace large enough to hold all of the log file data for all users writing to the checked
out tables. The amount of data and, therefore, the expected size of the log file tables
depend on the number of log file tables and how the applications are expected to use
them. If you expect your users to maintain large selection sets, create a tablespace large
enough to store the tables and index of the pooled log file tables.

The DBTUNE LOGFILE_DEFAULTS keyword holds the storage parameters that
regulate the storage of log file tables and indexes. (Refer to Chapter 3 for more
information on DBTUNE parameters). Within the LOGFILE_DEFAULTS keyword, the
SESSION_STORAGE parameter specifies the CREATE TABLE Oracle storage
parameters for the log file data tables of the pool. The SESSION_INDEX parameter
specifies the parameters of the CREATE INDEX statement for the indexes created on the
log file data tables. The tablespaces specified in these storage parameters must be large
enough to hold the data of the user’s log file entries.

Installing the optional sdesys_util package

The optional sdesys_util package, found under the %SDEHOME%/tools/oracle
directory, can be installed in the Oracle SYS users schema. This package contains stored
procedures that allow you to create and manage the SDE user.

To install the sdesys_util package, log in as the Oracle SYS user and execute the package
specification followed by its body:

connect sys/<password>

@sdesys_util.sps

Package created.

@sdesys_util.spb

Package body created.

You can allow a user other than SYS to execute the stored procedures of the sdesys_util
package by executing the sdesys_util.grant_admin_privs that grants the necessary
privileges. The usage of the grant_admin_privs stored procedure is as follows:

grant_admin_privs (

20 ArcSDE Configuration and Tuning Guide for Oracle

 administrator IN varchar2(30) DEFAULT 'system'
)

If you do not specify any arguments, the privileges are granted to the Oracle system user:

connect sys/<password>
exec sdesys_util.grant_admin_privs('JOE');

If a user, other than SYS, executes a stored procedure from the sdesys_util package, the
user must qualify it with the SYS user’s schema. For example, the system user would
execute the grant_pipes_locks stored procedure as follows:

connect system/<password>
exec sys.sdesys_util.grant_pipes_locks;

Granting execute privileges on DBMS_PIPE and DBMS_LOCK to PUBLIC

ArcSDE uses the stored procedures in the DBMS_PIPE and DBMS_LOCK Oracle built-
in packages. ArcSDE calls stored procedures of the DBMS_PIPE package when it stores
and transmits ArcSDE ROWIDs. ArcSDE calls the stored procedures of the
DBMS_LOCK package to add a row to the PROCESS_INFORMATION table
whenever an ArcSDE session connects. Your Oracle DBA must connect to the Oracle
instance as the SYS user and grant execute privileges on these packages to PUBLIC:

connect sys/<password>
grant execute on dbms_pipe to public;
grant execute on dbms_lock to public;

Alternatively, if you have installed the sdesys_util package you can connect as the Oracle
SYS user and execute its sdesys_util.grant_pipes_locks stored procedure:

connect sys/<password>
exec sdesys_util.grant_pipes_locks;

Creating the Oracle SDE user

Before you run the sdesetupora* command to create the geodatabase system tables on a
UNIX system, the SDE Oracle user must be created. The Microsoft Windows installation
of ArcSDE has automated this procedure. However, you can, if you want, create the SDE
Oracle user prior to installing ArcSDE.

Like any Oracle user, the SDE user requires a default tablespace. Review the previous
discussion of the ArcSDE system tablespaces to determine whether or not you need to
create separate tablespaces to store your ArcSDE system data.

Use the following SQL commands to create the SDE user. Substitute your own entries
for the SDE user’s password, default tablespace, and temporary tablespace:

connect system/<password>

create user sde
 identified by <password>
 default tablespace <sde user's default tablespace>
 temporary tablespace <temporary tablespace>;

Alternatively, you can use the SYS user’s SDESYS.UTIL_CREATE_SDE stored
procedure to create the SDE Oracle user. The usage for CREATE_SDE_USER is:

Chapter 2—Essential Oracle configuring and tuning 21

SDESYS_UTIL.CREATE_SDE_USER(
 sdedatafile IN VARCHAR2(256) DEFAULT NULL,
 sdetabspace IN VARCHAR2(30) DEFAULT 'SDE',
 temptabspace IN VARCHAR2(30) DEFAULT 'TEMP',
 sdepasswd IN VARCHAR2(30) DEFAULT 'SDE');

Executing this stored procedure without any arguments will create the SDE Oracle user
with a default tablespace set to SDE, a temporary tablespace set to TEMP, and the
password set to SDE:

connect sys/<password>
exec sdesys_util.create_sde_user;

CREATE_SDE_USER creates the SDE user’s default tablespace if you specify the
location of the tablespace’s data file.

If the default tablespace already exists, CREATE_SDE_USER will check it to make sure
it is big enough. If it is less than 100 MB, CREATE_SDE_USER issues a warning
message telling you to either increase the size of the default tablespace or decrease the
initial extents of the state, state_lineages, and mvtables DATA_DICTIONARY
configuration keyword storage parameters. If you have configured these storage
parameters to store these tables and their indexes in other tablespaces, then you may
disregard this warning. The sdesetupora* command will fail if it cannot find enough
space to store the geodatabase system tables and indexes.

Granting install privileges to the sde Oracle user

If you are creating a fresh install of ArcSDE, grant the following list of privileges to the
SDE user. These privileges must be granted to the SDE user:

SELECT ANY TABLE
CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

Alternatively, you can call the GRANT_SDE_INSTALL_PRIVS stored procedure
(found in the SDESYS_UTIL package) to grant these privileges to the SDE Oracle user:

connect sys/password
exec sdesys_util.grant_sde_install_privs;

Note: ArcSDE requires the Oracle SDE user be granted SELECT ANY TABLE
privileges. Granting SELECT ANY TABLE privileges to the SDE user allows it to
autoregister Oracle Spatial tables. Autoregistration occurs during a layer list when an
ArcSDE application detects an Oracle Spatial table that is listed in the Oracle Spatial
metadata table but is not listed in the SDE.LAYERS table. The SDE user must be able to
confirm the presence of the Oracle Spatial table before autoregistering it. Since there is
no guarantee that the owner of the table has granted select permissions on the table to the
SDE user, the SDE user must be granted SELECT ANY TABLES privileges.

22 ArcSDE Configuration and Tuning Guide for Oracle

ArcSDE does not require the SDE user to have the UNLIMITED TABLESPACE
privilege. From a space management perspective, the DBA may want to impose quotas.

Granting upgrade privileges to the SDE Oracle user

To upgrade a previous version of an ArcSDE database, grant the following list of
privileges to complete the upgrade process. Following the successful completion of the
upgrade process, you can reduce the privileges to those required for the install operation.

ALTER ANY INDEX
ALTER ANY TABLE
ANALYZE ANY
CREATE ANY INDEX
CREATE ANY PROCEDURE
CREATE ANY SEQUENCE
CREATE ANY TRIGGER
CREATE ANY VIEW
CREATE SESSION
DROP ANY INDEX
DROP ANY TABLE
DROP ANY VIEW
DROP ANY PROCEDURE
DROP ANY SEQUENCE
EXECUTE ANY PROCEDURE
SELECT ANY SEQUENCE
SELECT ANY TABLE
UNLIMITED TABLESPACE

You can grant this list of privileges by executing the
SDESYS_UTIL.GRANT_SDE_UPGRADE_PRIVS stored procedure:

connect sys/<password>
exec sdesys_util.grant_sde_upgrade_privs;

The upgrade privileges can be revoked and the install privileges granted by executing the
SDESYS_UTIL.REVOKE_SDE_UPGRADE_PRIVS stored procedure:

connect sys/<password>
exec sdesys_util.revoke_sde_upgrade_privs;

Note: To upgrade the ArcSDE database, the SDE user must be granted privileges to
create the sequences and triggers in the schemas of users who own tables referenced in
the SDE.TABLE_REGISTRY, SDE.LAYERS, or SDE.RASTER_COLUMNS tables.
Following the completion of a successful upgrade, the privileges can be revoked and
lesser privileges, assigned for the install operation, can be granted.

Creating Oracle users
The privileges that you grant to an ArcSDE Oracle user depend on the user’s function
within your organization and the type of ArcSDE log files to be used.

Typically the more responsibility a user has, the more access is required. Therefore, users
who create data objects must have the privileges required to do so, while users who edit
contents of data objects owned by other users require fewer privileges.

Chapter 2—Essential Oracle configuring and tuning 23

If your users create log files and data tables, you will need to grant the following
privileges to each user:

CREATE SESSION
CREATE TABLE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

On the other hand if you intend to have your users borrow their log files from the SDE
user’s log file pool, you only need to grant your users CREATE SESSION privileges.

The following table lists the privileges required based on a user’s responsibilities within
the organization.

Title Description Privileges

Viewer The viewer is allowed to connect
to an ArcSDE database. Other
users grant select privileges on
their tables and feature classes to
the viewer or to the public role.
The DBA can create a role that
can be granted select privileges
on data objects owned by other
users. The role can be granted to
the viewer.

CREATE SESSION

SELECT on other user’s data objects

Editor The editor is allowed to connect to
an ArcSDE database. Other users
grant to the editor select and
insert, update, or delete on data
objects they own. The DBA may
create a role that can be granted
select, insert, update, and delete
privileges on data objects owned
by other users. The role can be
granted to the editor.

CREATE SESSION

SELECT, INSERT, UPDATE, or DELETE on
other user’s data objects

Owner The owner is allowed to connect
to an ArcSDE database and
create data objects. The owner
may grant privileges on their
objects to other users or roles.
The DBA may create a role that
can be granted select, insert,
update, and delete privileges on
data objects owned by other
users. The role can be granted to
the owner.

CREATE SESSION
CREATE TABLE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

SELECT, INSERT, UPDATE, or DELETE on
other user’s objects

24 ArcSDE Configuration and Tuning Guide for Oracle

Manually creating ArcSDE Oracle users

When you create an Oracle user, assign your users a default tablespace and a temporary
tablespace. Permanent objects, such as tables, indexes, and so on, will be stored in the
default tablespace unless a tablespace name is specified when the data object is created.
The temporary tablespace holds sort runs that exceed the
PGA_AGGREGATE_TARGET—the approximate amount of memory allocated to the
PGA by the Oracle server.

Warning: If you do not specifically assign a default tablespace to a user, Oracle uses the
SYSTEM tablespace by default. Since the SYSTEM tablespace holds the Oracle system
tables, a vital part of the database, it is important not to use it for anything else. Since the
datasets managed by ArcSDE may be large, using the SYSTEM tablespace to store this
data could completely fill the SYSTEM tablespace and cause the Oracle database to
crash.

Oracle9i allows you to create a default temporary tablespace as a precaution against
overusing the SYSTEM tablespace for temporary purposes. Users not specifically
assigned a temporary tablespace will store temporary segments in the default temporary
tablespace.

This is the Oracle user creation syntax:

create user <username>
 identified by <password>
 default tablespace <default tablespace>
 temporary tablespace <temporary tablespace>
 quota unlimited on <default tablespace>;

If ArcSDE 8 log files are used, these are the basic privileges that must be granted to all
ArcSDE Oracle users until they connect for the first time:

CREATE SESSION
CREATE TABLE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

Chapter 2—Essential Oracle configuring and tuning 25

Connect as the user to create the standard log file tables, SDE_LOGFILES and
SDE_LOGFILE_DATA. To create a user of type VIEWER or EDITOR, revoke the
following list of privileges after the SDE log file tables have been created:

CREATE TABLE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

For the VIEWER, grant SELECT privileges on the specific data objects you want the
user to have permission to display or query. If you have a large community of viewers,
create a role that can be granted SELECT access on the data objects.

To grant or revoke SELECT access to complex geodatabase data objects, such as feature
datasets or standalone feature classes, you should use ArcCatalog. Use the grant or
revoke operation of the sdelayer administration command to grant or revoke SELECT
access if you have not installed ArcGIS Desktop. The access can be granted directly to a
user or to a role.

For the editor, grant SELECT privileges and editing (insert, update, or delete) privileges
on the specific data objects you want the users to have permission to query and edit. If
you must create many users who will be editors, you can save time by creating a role and
granting the SELECT and edit privileges to the role. Then grant the role to each editor.

In this example, the DBA creates the editor user Sam with the password TREETOP. The
default tablespace in which Sam will create his tables and indexes that are not assigned a
tablespace is GIS1.

Note: The ArcSDE Administrator creates DBTUNE configuration keywords that hold
the tablespace and other storage parameters Oracle assigns to tables and indexes when it
creates them. For more information about DBTUNE configuration keywords and how to
create and use them, see Chapter 3, ‘Configuring DBTUNE storage parameters’.

The temporary tablespace used when Sam creates indexes and performs sorts is TEMP1:

create user sam
 identified by treetop
 default tablespace gis1
 temporary tablespace temp1
 quota unlimited on gis1;

To create Sam’s standard log file tables (SDE_LOGFILES and SDE_LOGFILE_DATA)
and their associated sequence generator and trigger, the DBA grants the user Sam the
following privileges:

CREATE SESSION
CREATE TABLE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

26 ArcSDE Configuration and Tuning Guide for Oracle

The DBA connects to the ArcSDE database as user Sam to create the log file tables in
user Sam’s schema. The sdelayer administration command “describe” operation provides
a simple way to do this:

$ sdelayer -o describe -u sam -p treetop

Use the REVOKE <privilege> FROM <user> command to revoke all but the CREATE
SESSION privileges, since Sam is an editor and is not allowed to create a schema:

REVOKE CREATE TABLE FROM SAM;
REVOKE CREATE PROCEDURE FROM SAM;
REVOKE CREATE SEQUENCE FROM SAM;
REVOKE CREATE TRIGGER FROM SAM;
REVOKE UNLIMITED TABLESPACE FROM SAM;

Create SDE_VIEWER and SDE_EDITOR roles. The DBA has determined that all users
who own schema should grant SELECT privileges on their data objects to the
SDE_VIEWER role, and that they should grant INSERT, UPDATE, and DELETE to the
SDE_EDITOR role:

CREATE ROLE SDE_VIEWER;
CREATE ROLE SDE_EDITOR;

The DBA grants both the SDE_VIEWER and SDE_EDITOR roles to Sam:

GRANT SDE_VIEWER TO SAM;
GRANT SDE_EDITOR TO SAM;

Betty, a creator, uses the grant operation of the sdelayer command to grant select access
on her roads feature class to the SDE_VIEWER role. All viewers granted the
SDE_VIEWER role will have SELECT access to Betty’s roads feature class:

$ sdelayer -o grant -l roads,feature -A select -U sde_viewer -u betty -p
cdn

Betty also grants INSERT, UPDATE, and DELETE access to the SDE_EDITORS role.
Now editors granted the SDE_EDITORS role, such as Sam, will be able to make changes
to Betty’s roads feature class:

$ sdelayer -o grant -l roads,feature -A insert -U sde_editors -u betty -p
cdn
$ sdelayer -o grant -l roads,feature -A update -U sde_editors -u betty -p
cdn
$ sdelayer -o grant -l roads,feature -A delete -U sde_editors -u betty -p
cdn

Installing the USER_UTIL package to create and maintain ArcSDE users

As an alternative to executing the SQL statements to create and maintain ArcSDE users,
you can install the user_util package of stored procedures located in the
SDEHOME/tools/oracle directory. To install the package, connect as an Oracle DBA
(usually the Oracle system user) and run the package specification script followed by the
body script:

connect system/<password>
@user_util.sps

Chapter 2—Essential Oracle configuring and tuning 27

Package created

@user_util.spb

Package created

Using the stored procedures of the USER_UTIL package

The CREATE_USER_AND_LOGFILES stored procedure creates an Oracle user with
standard log files and grants privileges according to its user type. The usage for this
stored procedure is as follows:

USER_UTIL.CREATE_USER_AND_LOGFILES (
 username IN VARCHAR2(30),
 password IN VARCHAR2(30),
 default_tabsp IN VARCHAR2(30) DEFAULT 'USERS',
 temp_tabsp IN VARCHAR2(30) DEFAULT 'TEMP',
 usertype IN VARCHAR2(8) DEFAULT 'OPERATOR'
)

The username and password must be entered. The user’s default tablespace defaults to
USERS tablespace, while the temporary tablespace defaults to the TEMP tablespace. The
usertype argument defines the type of user that will be created, and it defaults to
OPERATOR.

A user created as an OPERATOR and granted CREATE SESSION privilege is not
allowed to create a schema and does not have access to any data objects owned by other
users.

A user created as an OWNER is granted privileges to create tables and granted CREATE
SCHEMA privileges. OWNER users automatically grant SELECT, INSERT, UPDATE,
or DELETE privileges on their own tables to other OWNER users and to OPERATOR
users.

Updating the SDE.DBTUNE table
After you have created the tablespaces for your tables and indexes, you should update the
SDE.DBTUNE table. The SDE.DBTUNE table is updated by editing a DBTUNE file,
which must be located under the $SDEHOME/etc directory, and importing the file into
the SDE.DBTUNE table. The default DBTUNE file is called dbtune.sde. This file is
imported into the SDE.DBTUNE table during the SDE setup that occurs when you run
sdesetupora*.

Create the keywords in the DBTUNE file that will contain the Oracle configuration
parameters of the feature classes and tables that you intend to create with ArcCatalog or
the ArcSDE administration tools.

For a detailed discussion on the maintenance of the DBTUNE table, refer to Chapter 3,
‘Configuring DBTUNE storage parameters’. This chapter describes DBTUNE
parameters that can be applied to each of the spatial storage methods supported by
ArcSDE for Oracle. The supported spatial storage formats are described in Appendixes C
and D.

28 ArcSDE Configuration and Tuning Guide for Oracle

Creating tables, feature classes, and raster columns
ArcGIS Desktop offers several ways to create and maintain the tables, indexes, and
feature classes of an ArcSDE database. Chapter 4, ‘Managing tables, feature classes, and
raster columns’, describes in detail the possible methods for creating tables and feature
classes using the ArcGIS Desktop.

Setting the Oracle initialization parameters
Whenever you start an Oracle instance, Oracle reads its initialization parameters from
either the init.ora file or from the server parameter file, spfile.ora. Both of these files
define the characteristics of the instance, but they are managed differently.

Changing parameters using the ALTER SYSTEM command will automatically be
reflected in the server parameter file if the instance was started by that method. If the
instance was started using an init.ora file, you will have to manually edit the file with a
text editor if you want changes to system parameters to affect more than the current
instance of the database.

This section describes some of the parameters that control allocation of shared memory.
For a detailed discussion of the Oracle initialization parameters, refer to Oracle Server
Tuning for your Oracle release.

The init.ora file is located under the $ORACLE_BASE/admin/<ORACLE_SID>/pfile
directory or folder. init.ora is a common name given to the initialization file of an Oracle
database instance, but for any given instance, the file is actually called init<oracle
SID>.ora. For example, if the Oracle System ID (SID) is GIS, the init.ora file for this
instance would be called initGIS.ora.

Managing Oracle’s memory
Care must be taken when setting the initialization parameters that affect memory. Setting
these parameters beyond the limits imposed by the physical memory resource of the host
machine significantly degrades performance. This section provides a few general rules
regarding configuration of System Global Area (SGA) as well as memory structures
affecting the size of an Oracle user’s private area, the PGA. The SGA is a block of shared
memory that Oracle allocates and shares with all sessions. For more information about
the SGA, refer to the Oracle Concepts Guide for your Oracle release.

SGA must not swap

You should not create an SGA that is larger than two-thirds the size of your server’s
physical RAM. Your virtual memory must be able to accommodate both the SGA and
the requirements of all active processes on the server.

Avoid excessive paging

Using your operating system tools (vmstat on UNIX systems and the Task Manager on
Windows), check for excessive paging. A high degree of paging can be the result of an
SGA that is too large.

Chapter 2—Essential Oracle configuring and tuning 29

Configure enough virtual memory

As a rule, Oracle recommends that your swap space be at least three to four times the size
of your physical RAM. The required size of the swap file on UNIX or the page file on
Windows depends on the number of active ArcSDE sessions.

For every ArcSDE application server session, a gsrvr process and a corresponding Oracle
process are started. To determine the memory usage of these processes, use the ps -elf
command on UNIX systems and the Processes tab of the Windows Task Manager. You
must deduct the size of the Oracle SGA from the Oracle user processes. The total size of
the ArcSDE gsrvr processes, the ArcSDE giomgr processes, Oracle user processes,
Oracle background processes, operating system processes, and any other process running
on the server must be able to fit into virtual memory.

For ArcSDE client applications that connected directly to an Oracle instance, the gsrvr
process does not exist. Also, if the ArcSDE service is not used because all client
applications connect directly to the Oracle instance, the giomgr process will not be started
either. For this reason direct connections have a smaller memory imprint on the server
since the gsrvr process is absent.

Redo log buffer
The redo log buffer is a component of the Oracle SGA that holds uncommitted changes
to the database. The log buffer is flushed to the current online redo log file every three
seconds or whenever a user issues a commit and the buffer becomes one-third full. The
size of the redo log buffer is controlled by the LOG_BUFFER parameter. Because of the
rapid rate at which the log buffer is flushed, it does not need to be that large.

Oracle recommends that you set this parameter to 512 KB or 128 KB multiplied by the
number of CPUs. If you have less than four CPUs, set this parameter to 512 KB.

log_buffer = 524288

Otherwise, set LOG_BUFFER to 128 KB times the number of CPUs.

Setting the LOG_BUFFER to a large value to process huge loading transactions may, in
fact, result in a performance reduction. Latch contention between transactions may occur
if the log buffer is set too large.

To determine if the redo log buffer is large enough while the system is active, examine
the Oracle dynamic table V$SYSSTAT. Compare the values of the redo log space
requests and the redo entries. Oracle recommends that you increase the size of the redo
log buffers if the ratio of these values is greater than 1:5,000.

select name, value
from v$sysstat
where name in ('redo entries' , 'redo log space requests');

Shared pool
The shared pool is another component of the Oracle SGA that holds both the data
dictionary cache and the library cache. The data dictionary cache holds information about

30 ArcSDE Configuration and Tuning Guide for Oracle

data objects, free space, and privileges. The library cache holds the most recently parsed
SQL statements.

Generally, if the shared pool is large enough to satisfy the resource requirements of the
library cache, it is already large enough to hold the data dictionary cache. The size of the
shared pool is controlled by the SHARED_POOL_SIZE parameter. At Oracle9i, you
must allocate shared pool space in multiples of a granule, which is 4M, 8M, or 16M
depending on the size of the SGA and the operating system. ESRI recommends that you
set the SHARED_POOL_SIZE parameter to a multiple of 16M to accommodate any
system ESRI supports and that you set this parameter to at least 128 MB:

shared_pool_size = 128,000,000

Highly active geodatabases supporting volatile utility or parcel editing systems may
require the SHARED_POOL_SIZE to be set as high as 200 MB.

Of the three SGA buffers, the shared pool is the most important. If the SGA is already as
large as it can be, given the size of your physical memory, reduce the size of the buffer
cache to accommodate a larger shared pool.

Buffer cache
The buffer cache is another component of the Oracle SGA that stores the most recently
used data blocks. Data blocks are the Oracle atomic unit of data transfer. Oracle reads and
writes data blocks to and from the database whenever the user edits or queries it. The size
of the buffer cache is controlled by the DB_CACHE_SIZE parameter.

For optimum performance, increase the size of the buffer cache without causing the
operating system to page excessively and/or swap the SGA. Oracle recommends that the
SGA not be larger than two-thirds of the physical RAM.

To estimate the size of the buffer cache, first determine how much physical RAM your
server has. Multiply this number by 0.66 to determine the target size of the SGA. Deduct
the SHARED_POOL_SIZE and LOG_BUFFER to return the amount of memory
available to the buffer cache. Reduce this number by 10 percent to account for Oracle’s
internal memory usage. Finally, divide by the database block size to determine the
DB_BLOCK_BUFFERS setting. (The recommended minimum data block size for
ArcSDE is at least 16 KB.)

memory available to SGA = physical RAM * 2/3

memory available to buffer cache
= (memory available to SGA - (shared_pool_size + log_buffer)) * 0.9

db_block_buffers

= memory available to buffer cache / db_block_size

Chapter 2—Essential Oracle configuring and tuning 31

Allocate space for the PGA
Allocate space for the program global area of the Oracle server processes. This space is
typically used as a temporary buffer for sorting and merging data during a table join. Set
the WORKAREA_SIZE_POLICY to AUTO, then initially set the
PGA_AGGREGATE_TARGET to the total physical RAM multiplied by 0.16. Once the
application has been in use for some time, tune the PGA_AGGREGATE_TARGET
according to the procedure outlined in the Oracle Performance Tuning Guide and
Reference.

workarea_size_policy = auto
pga_aggregate_target = <total physical RAM * 0.16)

Prepage the SGA
Set the PRE_PAGE_SGA to true for servers that are running a single Oracle instance.
Prepaging the SGA increases the amount of time required to start the Oracle server as
well as the amount of time required for users to connect. However, it does reduce the
number of page faults—which occur whenever Oracle must allocate another page to the
SGA—while the server is active:

pre_page_sga = true

Enabling the optional Oracle startup trigger
ArcSDE includes an optional startup trigger that is run whenever the Oracle instance is
started. The startup trigger cleans up any orphaned session information that remains in
the ArcSDE system tables following an instance failure. The startup trigger is optional
because ArcSDE invariably cleans up the orphaned metadata during its normal operation.
The startup trigger merely offers a guarantee that orphaned metadata will not be present
following the Oracle instance startup.

To create the startup trigger, run the SQL arcsde_database_startup.sql script as the Oracle
SYS user. The script is located at $SDEHOME/tools/oracle on UNIX systems and
%SDEHOME%\tools\oracle on Windows.

32 ArcSDE Configuration and Tuning Guide for Oracle

Updating Oracle statistics
The ArcSDE server has been built to work optimally with the cost-based optimizer,
though certain statements have been tuned using optimizer hints. As a result, you should
set the init.ora initialization variable OPTIMIZER_MODE to CHOOSE, allowing the
optimizer to choose the cost-based approach if you have computed statistics.

The ArcSDE software has been developed as an OLTP system. As such, Oracle
initialization parameters geared toward optimizing data warehousing queries will
adversely affect the performance of ArcSDE queries and should not be used. The
START_TRANSFORMATION_ENABLED parameter should be set to FALSE. You
should create the Oracle database using an OLTP template and not a data warehousing
template. You should not enable parallel execution on the ArcSDE schema.

Chapter 2—Essential Oracle configuring and tuning 33

Updating ArcSDE compressed binary statistics
For optimal performance of feature classes created with the ArcSDE compressed binary
storage format, keep the statistics up-to-date.

In ArcCatalog, to update the statistics of all of the tables and indexes within a feature
dataset, right-click the feature dataset and click Analyze. To update the tables and indexes
within a feature class, right-click the feature and click Analyze.

From the command line, use the update_dbms_stats operation of the sdetable
administration command to update the statistics for all the tables and indexes of a feature
class. It is better to use the update_dbms_stats operation rather than individually
analyzing the tables with the Oracle SQL ANALYZE statement because it updates the
statistics for all the tables of a feature class that require statistics. To have the
update_dbms_stats operation update the statistics for all the required tables, do not
specify the -K (schema object) option.

sdetable -o update_dbms_stats -t roads -m compute -u av -p mo

When the feature class is registered as multiversioned, the adds and deletes tables are
created to hold the business table’s added and deleted records. The version registration
process automatically updates the statistics for all the required tables at the time it is
registered.

34 ArcSDE Configuration and Tuning Guide for Oracle

Periodically update the statistics of dynamic tables and indexes to ensure that the Oracle
cost-based optimizer continues to choose an optimum execution plan. To save time, you
can analyze all the data objects within a feature dataset in ArcCatalog.

If you do not have enough temporary tablespace to compute statistics on larger tables, use
the -m option to estimate statistics. The tables will be estimated at a sample rate of
33 percent.

sdetable -o update_dbms_stats -t roads -m estimate -u av -p mo

You should consider increasing the size of your temporary tablespace to compute
statistics rather than estimate them, as it provides more accurate statistics for the Oracle
cost-based optimizer.

The statistics of a table’s indexes are automatically computed when the table is analyzed,
so there is no need to analyze the indexes separately. However, if you need to do so you
can use the UPDATE_DBMS_STATS -n option with the index name.

The example below illustrates how the statistics for the f2_ix1 index of the roads feature
table can be updated:

sdetable -o update_dbms_stats -t roads -K f -n F2_IX1 -u av -p mo

For more information on analyzing geodatabase objects from ArcCatalog, refer to
Building a Geodatabase.

For more information on the sdetable administration command and the
UPDATE_DBMS_STATS operation, refer to the ArcSDE Developer Help.

Updating Oracle Spatial geometry type statistics
Update the statistics of the business table containing an Oracle Spatial column with
Analyze from ArcCatalog or with the sdetable UPDATE_DBMS_STATS operation.

sdetable -o update_dbms_stats -t roads -m compute -u av -p mo

You may also update the statistics using the Oracle ANALYZE statement. Use the
compute statistics option if there is enough temporary tablespace available to permit the
operation. Otherwise, use the estimate statistics option with as high a sample rate as
possible.

analyze table roads compute statistics;

When ArcSDE creates data using Oracle Spatial geometry, it can optionally create the
layer’s Oracle Spatial index. Oracle Spatial suggests that you analyze this spatial index. If
ArcSDE is asked to create the Oracle Spatial index for you, it automatically analyzes this
index. If you decide to create the Oracle Spatial index on your own, you will have to use
the Oracle ANALYZE statement to analyze your index after creating it.

For more information on the Oracle ANALYZE statement, refer to the Oracle SQL
Reference Manual for your release of Oracle.

Note: For Oracle 10g, Oracle recommends DBMS_STATS for collecting optimizer
statistics. Please consult your Oracle documentation for more information.

C H A P T E R 3

Configuring DBTUNE storage
parameters

The DBTUNE storage parameters are stored in the DBTUNE table. The
DBTUNE table, along with all other metadata tables, is created during
the setup phase that follows the installation of the ArcSDE software. The
ArcSDE software install creates a DBTUNE file under the etc directory
from which the DBTUNE table is populated. If no DBTUNE file is
present during setup, ArcSDE will populate the DBTUNE table with
default values.

DBTUNE storage parameters allow you to control how ArcSDE clients
create objects within an Oracle database. They allow you to determine
such things as how to allocate space to a table or index, which tablespace
a table or index is created in, as well as other Oracle-specific storage
attributes. They also allow you to specify one of the available storage
formats for the geometry of a spatial column.

This chapter discusses the mechanism by which ArcSDE manages
storage parameters that you provide and how ArcSDE applies them to
specific statements submitted to Oracle when creating ArcSDE tables,
indexes, and other objects in an Oracle database.

Many DBTUNE parameters include corresponding Oracle storage
parameters. For detailed information on how Oracle uses these storage
parameters to control space allocation, refer to the Oracle Server
Administrator’s Guide for your Oracle release.

36 ArcSDE Configuration and Tuning Guide for Oracle

The DBTUNE table
The DBTUNE storage parameters are maintained in the database in the DBTUNE
metadata table. The DBTUNE table, along with all other metadata tables, is created
during the setup phase that follows the installation of the ArcSDE software.

The DBTUNE table is populated with specific default values, but these values may be
changed. Several example versions of the DBTUNE file are provided with the
installation media for ArcSDE.

DBTUNE parameters

Parameters define the storage configuration of simple objects, such as tables and
indexes, as well as complex objects such as feature classes, network classes, and raster
columns. Many different parameters may be grouped together under a single
configuration keyword.

ArcSDE client applications and some ArcSDE administration tools reference one or
more configuration keywords when creating an object.

When a configuration keyword is specified by an ArcSDE application or administration
tool, the parameters within the associated parameter group are searched, and the
necessary configuration strings are incorporated into the CREATE TABLE or CREATE
INDEX statement submitted to the Oracle database server.

The structure of the DBTUNE file

Storage parameters in a DBTUNE file occur as a combination of parameter name and
configuration string delimited by white space. A configuration string value may span
multiple lines and must be enclosed in double quotes. For example, a valid specification
for the parameter named A_INDEX_ROWID might look like this:

A_INDEX_ROWID "PCTFREE 0 TABLESPACE GIS1 INITRANS 4 STORAGE (INITIAL
4M)"

Storage parameters are grouped by keyword. Each parameter group is introduced by its
keyword, which is prefixed by two pound signs, “##”. A line beginning with the word
“END” terminates each parameter group. Double pound signs, “##”, signal the presence
of a keyword but are not part of the keyword itself.

For example, a group of parameters under the configuration keyword
“WILSON_DATA” may look like this:

##WILSON_DATA

Chapter 3—Configuring DBTUNE storage parameters 37

ATTRIBUTE_BINARY "LONGRAW"
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 TABLESPACE WILSON_INDEXES STORAGE

(INITIAL 4M)"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 TABLESPACE WILSON_INDEXES STORAGE

(INITIAL 4M)"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 TABLESPACE WILSON_INDEXES STORAGE

(INITIAL 4M)"
B_STORAGE "PCTFREE 0 INITRANS 1 TABLESPACE WILSON_DATA STORAGE

(INITIAL 8M)"
END

In special circumstances, ArcSDE references a compound keyword when creating
database objects. The compound keyword allows ArcSDE to create related database
objects having different object creation parameters to accommodate different
performance needs. A compound keyword consists of a configuration keyword plus a
suffix delimited by a double colon, “::”. For example:

##ELECTRIC::DESC

Comments within the DBTUNE file are indicated by a single pound sign, “#”. Default
versions of the DBTUNE file provided in the general software release contain lines that
are commented out. Such lines are used as placeholders for certain storage parameters,
such as tablespace name, and may be restored by removing the comment character and
editing the line.

Any number of parameter groups may be specified in a DBTUNE file. However, certain
groups and certain parameter names within groups are expected to exist and will be
created in the DBTUNE table if they do not exist in the DBTUNE file.

The structure of the DBTUNE table

Parameters from a DBTUNE file are loaded into the DBTUNE table using the
sdedbtune utility. The DBTUNE table has the following definition:

Name Null? Datatype
keyword not null varchar2(32)
parameter_name not null varchar2(32)
config_string null varchar2(2048)

The keyword field stores the configuration keyword for the group in which each
parameter is found. For a single keyword, there may be many different parameter_name
values, each one associated with a config_string value.

After creating the DBTUNE table, the setup phase of the ArcSDE installation populates
the table with the contents of the dbtune.sde file, which it expects to find in the
%SDEHOME%/etc directory under Windows or the $SDEHOME/etc under UNIX. If
the DBTUNE table already exists, the ArcSDE setup phase will not alter its contents.

38 ArcSDE Configuration and Tuning Guide for Oracle

Managing the DBTUNE table
Through the use of the sdedbtune utility, you can initialize or alter the contents of the
DBTUNE table. This utility guarantees that the DBTUNE table maintains a certain
default set of keywords, parameters, and parameter values.

In addition to the default keywords and parameters, you may add your choice of
keywords and configuration values to the DBTUNE file.

Note: ESRI does not recommend using SQL to directly alter the contents of the
DBTUNE table. Doing so would bypass certain protections written into the sdedbtune
utility, possibly leading to reduced performance.

Initializing the DBTUNE table

The dbtune.sde file that is provided with the install media contains default values, which
are used to initialize the DBTUNE table.

On UNIX systems, you can modify the dbtune.sde file prior to running the sdesetupora*
command. On Windows systems, the setup phase is part of the install, so you will have
to edit the file and use the sdedbtune import operation to customize the DBTUNE table.

If the dbtune.sde file is missing when the sdesetupora* command is executed, or if
specific parameters are missing because the dbtune.sde file has been altered, the ArcSDE
software will enter software default values into the DBTUNE table.

Customizing the DBTUNE file

Prior to creating ArcSDE objects, you should customize the dbtune.sde file by
specifying the tablespace names for storage parameters. In the default dbtune.sde file,
the tablespace entries in the dbtune.sde file have been commented out with the “#”
character.

To customize the dbtune.sde file, remove the comment character preceding each
tablespace specification and enter the names of the tablespaces where you want to store
your ArcSDE tables and indexes. Be careful not to remove the double quotation marks
that surround the configuration strings.

Follow the procedure provided in the following example for updating the Oracle
tablespace parameter in the dbtune.sde file.

Chapter 3—Configuring DBTUNE storage parameters 39

The DEFAULTS configuration keyword in the dbtune.sde file contains the
B_STORAGE storage parameter with the Oracle tablespace parameter commented out:

##DEFAULTS

GEOMETRY_STORAGE "SDEBINARY"
ATTRIBUTE_BINARY "LONGRAW"
B_STORAGE "PCTFREE 0 INITRANS 4"
TABLESPACE <default business table tablespace name>

Edit the dbtune.sde file, remove the “#” comment character, and enter the name of the
tablespace you want to store business tables in by default:

##DEFAULTS

GEOMETRY_STORAGE "SDEBINARY"
ATTRIBUTE_BINARY "LONGRAW"
B_STORAGE "PCTFREE 0 INITRANS 4
 TABLESPACE ROADS"

When the setup program loads, your customized DBTUNE configuration keywords and
storage parameters are written into the DBTUNE table.

Editing the DBTUNE table

If you need to change the contents of the DBTUNE table after it is loaded, you should
use the sdedbtune utility and follow these steps.

1. Export the DBTUNE table to a text file using the sdedbtune –o export command.

2. Edit the resulting file with a UNIX file-based editor, such as vi or a Windows file-
based editor such as Notepad.

3. Import the edited file to the DBTUNE table using the sdedbtune –o import
command.

In the following example, the DBTUNE table is exported to the file dbtune.out. Then,
the file is edited with the UNIX “vi” file-based editor.

$ sdedbtune -o export -f dbtune.out -u sde -p sdepasswd

ArcSDE 9 Wed Oct 4 22:32:44 PDT 2003
Attribute Administration Utility

 Successfully exported to file SDEHOME\etc\dbtune.out

$ vi dbtune.out

$ sdedbtune -o import -f dbtune.out -u sde -p sdepasswd -N

40 ArcSDE Configuration and Tuning Guide for Oracle

ArcSDE 9 Wed Oct 4 22:32:44 PDT 2003
Attribute Administration Utility

 Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports and imports from the
$SDEHOME/etc directory. You cannot specify that files should be located in another
directory. By not allowing the relocation of the file, the sdedbtune command ensures the
DBTUNE parameters remain under the ownership of the ArcSDE administrator.

Adding keywords to the DBTUNE table

You may add parameter groups to the DBTUNE table for any special purpose. For
instance, you may want to create certain feature classes in a newly created tablespace
that is segregated from the rest of the data.

To add keywords, follow the instructions above for editing the DBTUNE table. When
you edit the export file, it is often a good idea to create a new parameter group as a cut
and paste copy of an existing parameter group in order to avoid introducing syntax
errors. You may then edit the configuration keyword and any of the strings to desired
new values before saving the DBTUNE file and importing it back into the DBTUNE
table.

Using the DBTUNE table
At its most basic level, the DBTUNE table provides configuration strings that ArcSDE
appends to a CREATE TABLE or CREATE INDEX statement in SQL. Therefore, the
configuration strings specify storage parameters that must be considered valid by the
Oracle server.

Choosing the configuration string

The choice of configuration strings by an ArcSDE application depends on the operation
being performed and the type of object on which it is being performed, as well as the
configuration keyword. For example, if the type of operation is CREATE TABLE and
the type of table being created is a business table, the parameter_name of B_STORAGE
will be used to determine the configuration string.

Chapter 3—Configuring DBTUNE storage parameters 41

The ArcSDE application then searches the DBTUNE table for a configuration keyword
that matches the one entered and uses the configuration string of the appropriate storage
parameter.

If the application cannot find the requested storage parameter within the specified
parameter group, it searches the DEFAULT parameter group. If the requested parameter
group cannot be located within the DEFAULT parameter group, ArcSDE uses the
Oracle defaults to create the table or index.

Table parameters

Table parameters define the storage configuration of an Oracle table. ArcSDE appends
the configuration string associated with the parameter to the CREATE TABLE
statement prior to submitting the statement to Oracle.

Valid entries for an ArcSDE table include any parameter allowable to the right of the
column list in the CREATE TABLE statement, including the TABLESPACE and
STORAGE clauses.

For example, if you define the B_STORAGE parameter in this manner:

B_STORAGE "tablespace roads_tabsp storage (initial 10M) initrans 4 pctfree
10"

ArcSDE would execute the following Oracle CREATE TABLE statement:

CREATE TABLE roads (road_id integer, name varchar2(32), surface_code
integer)
tablespace roads_tabsp storage (initial 10M) initrans 4 pctfree 0;

Index parameters

Index parameters define the storage configuration of an Oracle index. ArcSDE appends
the index parameter to an Oracle CREATE INDEX statement prior to submitting the
statement to Oracle.

Valid entries in an ArcSDE index parameter include any parameter allowable by the
Oracle server to the right of the column list of the CREATE INDEX statement,
especially the TABLESPACE and STORAGE clauses.

For example, if you specify the B_INDEX_USER parameter in this manner:

B_INDEX_USER "tablespace roads_idx_tabsp storage (initial 1M) initrans 4
pctfree 10 nologging"

ArcSDE would assemble a CREATE INDEX statement like this:

CREATE INDEX roads_idx on roads (road_id)

42 ArcSDE Configuration and Tuning Guide for Oracle

tablespace roads_idx_tabsp storage (initial 1M) initrans 4 pctfree 10
nologging;

Note: ESRI recommends that you create your indexes with NOLOGGING. Doing so
will avoid logging the changes made to the indexes in the Oracle redo log files.
Although the index cannot be recovered from the archive log in the event that you
should lose the data file the index is stored in, you can easily re-create the index using the
ALTER INDEX <index_name> REBUILD command. Therefore, ESRI believes that
the ease at which an index may be regenerated outweighs the need to log the changes in
the event of a disk failure.

Defining the storage parameters
Configuration keywords may include any combination of three basic types of storage
parameters: metaparameters, table parameters, and index parameters.

Metaparameters define the way certain types of data will be stored, the environment of a
configuration keyword, or a comment that describes the configuration keyword. Table
and index parameters establish the storage characteristics of, respectively, tables and
indexes.

The business table storage parameter

A business table is any Oracle table created by an ArcSDE client, the sdetable
administration command, or the ArcSDE C application programming interface (API)
SE_table_create function.

Use the DBTUNE table’s B_STORAGE parameter to define the storage configuration
of a business table.

The business table index storage parameters

Three index storage parameters exist to support the creation of business table indexes.

The B_INDEX_USER storage parameter holds the storage configuration for user-
defined indexes created with the C API function SE_table_create_index and the
create_index operation of the sdetable command.

The B_INDEX_ROWID storage parameter holds the storage configuration of the index
that ArcSDE creates on a register table’s object ID column, commonly referred to as the
ROWID.

Chapter 3—Configuring DBTUNE storage parameters 43

Note: ArcSDE registers all tables that it creates. Tables not created by ArcSDE can also
be registered with the sdetable –o alter_reg command or with ArcCatalog. The
SDE.TABLE_REGISTRY system table maintains a list of the currently registered
tables.

The B_INDEX_SHAPE storage parameter holds the storage configuration of the spatial
column index that ArcSDE creates when a spatial column is added to a business table.
This index is created by the ArcSDE C API function SE_layer_create. This function is
called by ArcGIS® when it creates a feature class and by the add operation of the
sdelayer command.

The B_INDEX_RASTER storage parameter holds the storage configuration of the raster
column index that ArcSDE creates when a raster column is added to a business table.
This index is created by the ArcSDE C API function SE_rastercolumn_create. This
function is called by ArcGIS when it creates a feature class and by the add, copy, and
import operations of the sderaster command.

Multiversioned table storage parameters

Registering a business table as multiversioned allows multiple users to maintain and edit
their copy of the object. At appropriate intervals, users merge the changes made to their
copy with the changes made by other users and reconcile any conflicts that arise when
the same rows are modified.

ArcSDE creates two tables—the adds table and the deletes table—for each table that is
registered as multiversioned.

The A_STORAGE parameter maintains the storage configuration of the adds table. Four
other storage parameters hold the storage configuration of the indexes of the adds table.
The adds table is named A<n>, where <n> is the registration ID listed in the
SDE.TABLE_REGISTRY system table. For instance, if the business table ROADS is
listed with a registration ID of 10, ArcSDE creates the adds table as A10.

The A_INDEX_ROWID storage parameter holds the storage configuration of the index
that ArcSDE creates on the multiversion object ID column, commonly referred to as the
ROWID. The adds table ROWID index is named A<n>_ROWID_IX1, where <n> is
the business table’s registration ID, which the adds table is associated with.

The A_INDEX_STATEID storage parameter holds the storage configuration of the
index that ArcSDE creates on the adds table’s SDE_STATE_ID column. The

44 ArcSDE Configuration and Tuning Guide for Oracle

SDE_STATE_ID column index is called A<n>_STATE_IX2, where <n> is the business
table’s registration ID, which the adds table is associated with.

The A_INDEX_SHAPE storage parameter holds the storage configuration of the index
that ArcSDE creates on the adds table’s spatial column. If the business table contains a
spatial column, the column and the index on it are duplicated in the adds table. The adds
table’s spatial column index is called A<n>_IX1_A, where <n> is the layer ID of the
feature class as it is listed in the SDE.LAYERS table.

The A_INDEX_USER storage parameter holds the storage configuration of user-
defined indexes that ArcSDE creates on the adds table. The user-defined indexes on the
business tables are duplicated on the adds table.

The D_STORAGE parameter holds the storage configuration of the deletes table. Two
other storage parameters hold the storage configuration of the indexes that ArcSDE
creates on the deletes table. The deletes table is named D<n>, where <n> is the
registration ID listed in the SDE.TABLE_REGISTRY system table. For instance, if the
business table ROADS is listed with a registration ID of 10, ArcSDE creates the deletes
table as D10.

The D_INDEX_STATE_ROWID storage parameter holds the storage configuration of
the D<n>_IDX1 index that ArcSDE creates on the deletes table’s SDE_STATE_ID and
SDE_DELETES_ROW_ID columns.

The D_INDEX_DELETED_AT storage parameter holds the storage configuration of
the D<n>_IDX2 index that ArcSDE creates on the deletes table’s SDE_DELETED_AT
column.

Note: If a configuration keyword is not specified when the registration of a business
table is converted from single version to multiversion, the adds and deletes tables and
their indexes are created with the storage parameters of the configuration keyword the
business table was created with.

Feature class storage parameters

A feature class created with an ArcSDE compressed binary storage (LONG RAW or
BLOB data type) format adds two tables to the Oracle database—the feature table and
the spatial index table. Three indexes are created on the feature table, and two indexes
are created on the spatial index table. The storage parameters for these tables and
indexes follow the same pattern as the B_STORAGE and B_INDEX_* storage
parameters of the business table.

Chapter 3—Configuring DBTUNE storage parameters 45

The F_STORAGE parameter holds the Oracle CREATE TABLE storage configuration
string of the feature table. The feature table is created as F_<n>, where <n> is the layer
ID of the table’s feature class as found in the SDE.LAYERS table.

The F_INDEX_FID storage parameter holds the Oracle CREATE INDEX storage
configuration string of the feature table’s spatial column index. The spatial column is
created as F<n>_UK1, where <n> is the layer ID of the index’s feature class as found in
the SDE.LAYERS table.

The F_INDEX_AREA storage parameter holds the Oracle CREATE INDEX storage
configuration of the feature table’s area column index. The spatial column is created as
F<n>_AREA_IX2, where <n> is the layer ID of the index’s feature class as found in the
SDE.LAYERS table.

The F_INDEX_LEN storage parameter holds the Oracle CREATE INDEX storage
configuration of the feature table’s length column index. The spatial column is created as
F<n>_LEN_IX3, where <n> is the layer ID of the index’s feature class as found in the
SDE.LAYERS table.

The S_STORAGE parameter holds the Oracle CREATE TABLE storage configuration
of the spatial index table. The spatial index table is created as S_<n>, where <n> is the
layer ID of the spatial index table’s feature class as found in the SDE.LAYERS table.

The S_INDEX_ALL storage parameter holds the Oracle CREATE INDEX storage
configuration of the spatial table first index. The spatial index table is created as
S_<n>_IX1, where <n> is the layer ID of the index’s feature class found in the
SDE.LAYERS table.

The S_INDEX_SP_FID storage parameter holds the Oracle CREATE INDEX storage
configuration of the spatial table second index. The spatial index table is created as
S_<n>_IX2, where <n> is the layer ID of the index’s feature class found in the
SDE.LAYERS table.

Raster table storage parameters

A raster column added to a business table is actually a foreign key reference to raster
data stored in a schema consisting of four tables and five supporting indexes.

The RAS_STORAGE parameter holds the Oracle CREATE TABLE storage
configuration of the RAS table.

The RAS_INDEX_ID parameter holds the Oracle CREATE TABLE storage
configuration of the RAS table index.

46 ArcSDE Configuration and Tuning Guide for Oracle

The BND_STORAGE parameter holds the Oracle CREATE TABLE storage
configuration of the BND table index.

The BND_INDEX_ COMPOSITE parameter holds the Oracle CREATE INDEX
storage configuration of the BND table’s composite column index.

The BND_INDEX_ID storage holds the Oracle CREATE INDEX storage configuration
of the BND table’s row ID (RID) column index.

The AUX_STORAGE parameter holds the Oracle CREATE TABLE storage
configuration of the AUX table.

The AUX_INDEX_COMPOSITE parameter holds the Oracle CREATE INDEX
storage configuration of the AUX table’s index.

The BLK_STORAGE parameter holds the Oracle CREATE TABLE storage
configuration of the BLK table.

The BLK_INDEX_COMPOSITE parameter holds the Oracle CREATE TABLE
storage configuration of the BLK table’s index.

Arranging storage parameters by keyword
Storage parameters of the DBTUNE table are grouped by keyword. The following
keywords are present by default in the DBTUNE table:

• DEFAULTS

• DATA_DICTIONARY

• IMS_METADATARELATIONSHIPS

• IMS_METADATA

• IMS_METADATATAGS

• IMS_METADATATHUMBNAILS

• IMS_METADATAUSERS

• IMS_METADATAVALUES

• IMS_METADATAWORDINDEX

• IMS_METADATAWORDS

• LOGFILE_DEFAULTS

Chapter 3—Configuring DBTUNE storage parameters 47

• NETWORK_DEFAULTS

• NETWORK_DEFAULTS::DESC

• NETWORK_DEFAULTS::NETWORK

• SURVEY_MULTI_BINARY

• TOPOLOGY_DEFAULTS

• TOPOLOGY_DEFAULTS::DIRTYAREAS

DEFAULTS keyword

Each DBTUNE table has a fully populated DEFAULTS configuration keyword.

The DEFAULTS configuration keyword can be selected whenever you create a table,
index, feature class, or raster column. If you do not choose a keyword for one of these
objects, the DEFAULTS configuration keyword is used. If you do not include a storage
parameter in a configuration keyword that you have defined, ArcSDE uses the storage
parameter from the DEFAULTS configuration keyword.

The DEFAULTS configuration keyword relieves you of the need to define all the
storage parameters for each of your configuration keywords. The storage parameters of
the DEFAULTS configuration keyword should be populated with values that represent
the average storage configuration of your data.

During installation, if the ArcSDE software detects a missing DEFAULTS configuration
keyword storage parameter in the dbtune.sde file, it automatically adds the storage
parameter. If you import a DBTUNE file with the sdedbtune command, the command
automatically adds default storage parameters that are missing. ArcSDE will detect the
presence of the following list of storage parameters and insert the storage parameter and
the default configuration string.

##DEFAULTS

ATTRIBUTE_BINARY "LONGRAW"
AUX_INDEX_COMPOSITE "PCTFREE 10 INITRANS 4 NOLOGGING"
AUX_STORAGE "PCTFREE 10 INITRANS 4"
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
A_STORAGE "PCTFREE 0 INITRANS 4"
BLK_INDEX_COMPOSITE "PCTFREE 10 INITRANS 4 NOLOGGING"
BLK_STORAGE "PCTFREE 0 INITRANS 4"
BND_INDEX_COMPOSITE "PCTFREE 10 INITRANS 4 NOLOGGING"
BND_INDEX_ID "PCTFREE 10 INITRANS 4 NOLOGGING"
BND_STORAGE "PCTFREE 0 INITRANS 4"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"

48 ArcSDE Configuration and Tuning Guide for Oracle

B_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_XML "PCTFREE 10 INITRANS 4 NOLOGGING"
B_STORAGE "PCTFREE 0 INITRANS 4"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
D_STORAGE "PCTFREE 0 INITRANS 4"
F_INDEX_AREA "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_LEN "PCTFREE 10 INITRANS 4 NOLOGGING"
F_STORAGE "PCTFREE 0 INITRANS 4"
GEOMETRY_STORAGE "SDEBINARY"
RAS_INDEX_ID "PCTFREE 10 INITRANS 4 NOLOGGING"
RAS_STORAGE "PCTFREE 0 INITRANS 4"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 NOLOGGING"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
S_STORAGE "PCTFREE 0 INITRANS 4"
UI_TEXT ""
XML_DOC_INDEX "PCTFREE 10 INITRANS 4 NOLOGGING"
XML_DOC_STORAGE "PCTFREE 0 INITRANS 4"
XML_DOC_TEXT_TYPE "LONGRAW"
XML_IDX_INDEX_DOUBLE "PCTFREE 10 INITRANS 4 NOLOGGING"
XML_IDX_INDEX_ID "PCTFREE 10 INITRANS 4 NOLOGGING"
XML_IDX_INDEX_PK "PCTFREE 10 INITRANS 4 NOLOGGING"
XML_IDX_INDEX_TAG "PCTFREE 10 INITRANS 4 NOLOGGING"
XML_IDX_STORAGE "PCTFREE 0 INITRANS 4"
XML_IDX_TEXT_UPDATE_METHOD "NONE"

END

Setting the system table DATA_DICTIONARY configuration
keyword

During the execution of the sdesetupora* administration tool, the ArcSDE and
geodatabase system tables and indexes are created with the storage parameters of the
DATA_DICTIONARY configuration keyword. You may customize the configuration
keyword in the dbtune.sde file prior to running the sdesetupora* tool. In this way, you
can change default storage parameters of the DATA_DICTIONARY configuration
keyword.

Edits to all the geodatabase system tables and most of the ArcSDE system tables occur
when schema change occurs. As such, edits to these system tables and indexes usually
happen during the initial creation of an ArcGIS database with infrequent modifications
occurring whenever a new schema object is added.

Four of the ArcSDE system tables—VERSION, STATES, STATE_LINEAGES, and
MVTABLES_MODIFIED—participate in the ArcSDE versioning model and record
events resulting from changes made to multiversioned tables. If your site makes
extensive use of a multiversioned database, these tables and their associated indexes are
quite active. Separating these objects into their own tablespace allows you to position

Chapter 3—Configuring DBTUNE storage parameters 49

their data files with data files that experience low I/O activity and thus minimize disk I/O
contention.

If the dbtune.sde file does not contain the DATA_DICTIONARY configuration
keyword or if any of the required parameters are missing from the configuration
keyword, the following records will be inserted into the DATA_DICTIONARY when
the table is created. (Note that the DBTUNE file entries are provided here for
readability.)

##DATA_DICTIONARY

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 40K)"
B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 40K)"
B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 40K)"
STATE_LINEAGES_TABLE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 40M)"
STATES_TABLE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 8M)"

STATES_INDEX "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 1M)"
MVTABLES_MODIFIED_TABLE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 2M)"
MVTABLES_MODIFIED_INDEX "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 2M)"
VERSIONS_TABLE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 256K)"
VERSIONS_INDEX "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 128K)"
XML_INDEX_TAGS_INDEX "INITRANS 5 STORAGE (INITIAL 128K)"
XML_INDEX_TAGS_TABLE "INITRANS 4 STORAGE (INITIAL 128K)"
XML_TAGS_PK_INDEX "INITRANS 5 STORAGE (INITIAL 128K)"
XML_TAGS_TABLE "INITRANS 4 STORAGE (INITIAL 1M)"
XML_TAGS_UK_INDEX "INITRANS 5 STORAGE (INITIAL 128K)"

END

The TOPOLOGY keyword

The TOPOLOGY keyword controls the storage of topology tables, which are named
POINTERRORS, LINEERRORS, POLYERRORS, and DIRTYAREAS. An SDE
instance must have a valid topology keyword in the DBTUNE table, or topology will not
be built.

The DIRTYAREAS table maintains information on areas within a layer that have been
changed. Because it tracks versions, data will be inserted or updated but not deleted
during normal use. The DIRTYAREAS table will reduce in size only when database
versions are compressed.

Because the DIRTYAREAS table is much more active than the remaining topology
tables, the TOPOLOGY keyword may be compound. You may specify the
DIRTYAREAS suffix to list the configuration string to be used to create the topology
tables.

For Oracle, the default values for TOPOLOGY and TOPOLOGY::DIRTYAREAS are:

##TOPOLOGY_DEFAULTS

50 ArcSDE Configuration and Tuning Guide for Oracle

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
A_STORAGE "PCTFREE 0"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
B_STORAGE "PCTFREE 0 INITRANS 4"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
D_STORAGE "PCTFREE 10 INITRANS 4"
F_INDEX_AREA "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_LEN "PCTFREE 10 INITRANS 4 NOLOGGING"
F_STORAGE "PCTFREE 10 INITRANS 4"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 NOLOGGING"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
S_STORAGE "PCTFREE 10 INITRANS 4"
UI_TOPOLOGY_TEXT "The topology default configuration"
END

##TOPOLOGY_DEFAULTS::DIRTYAREAS
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
A_STORAGE "PCTFREE 10 INITRANS 4"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
B_STORAGE "PCTFREE 10 INITRANS 4"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
D_STORAGE "PCTFREE 10 INITRANS 4"
F_INDEX_AREA "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_LEN "PCTFREE 10 INITRANS 4 NOLOGGING"
F_STORAGE "PCTFREE 10 INITRANS 4"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 NOLOGGING"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
S_STORAGE "PCTFREE 10 INITRANS 4"
END

The IMS METADATA keyword

The IMS METADATA keywords control the storage of the IMS metadata tables. They
are a standard part of the DBTUNE table. If the IMS_METADATA storage parameters
are not present in the DBTUNE file when it is imported into the DBTUNE table,
ArcSDE will supply software defaults.

The software defaults have the same settings as the parameters listed in the dbtune.sde
table, which is shipped with ArcSDE. The Oracle parameter settings, such as pctfree and
initrans, should be sufficient. However, you will need to edit the tablespace names.

Chapter 3—Configuring DBTUNE storage parameters 51

For more information about installing IMS metadata and the associated tables and
indexes, refer to ArcIMS Metadata Server documentation.

The IMS_METADATA storage parameters control the storage of the ims_metadata
feature class. Four indexes are created on the ims_metadata business table. ArcSDE
creates the default IMS_METADATA keyword in the DBTUNE table if the keyword is
missing from the DBTUNE file when it is imported.

The IMS metadata keywords are as follows:

##IMS_METADATA

B_STORAGE "PCTFREE 10 INITRANS 4
 STORAGE (INITIAL 100M)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 6M) NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 6M) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 6M) NOLOGGING"

F_STORAGE "PCTFREE 0 INITRANS 4 STORAGE (INITIAL 40M)"

F_INDEX_FID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 3M) NOLOGGING"

F_INDEX_AREA "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 3M) NOLOGGING"

F_INDEX_LEN "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 3M) NOLOGGING"

S_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 16M)"

S_INDEX_ALL "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 16M)
NOLOGGING"

S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 3M) NOLOGGING"

COMMENT "The IMS metatdata feature class"

UI_TEXT ""

END

The IMS_METADATARELATIONSHIPS keyword controls the storage of the
ims_metadatarelationships business table. Three indexes are created on the
ims_metadatarelationships business table. ArcSDE creates the default
IMS_METADATARELATIONSHIPS keyword in the DBTUNE table if the keyword
is missing from the DBTUNE file when it is imported.

##IMS_METADATARELATIONSHIPS

B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 256K)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 64K)
NOLOGGING"

52 ArcSDE Configuration and Tuning Guide for Oracle

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 64K)
NOLOGGING"

END

The IMS_METADATATAGS keyword controls the storage of the ims_metadatatags
business table. Two indexes are created on the ims_metadatatags business table.
ArcSDE creates the following default IMS_METADATATAGS keyword in the
DBTUNE table if the keyword is missing from the DBTUNE file when it is imported.

##IMS_METADATATAGS

B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 64K)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 64K)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 64K)
NOLOGGING"

END

The IMS_METADATATHUMBNAILS keyword controls the storage of the
ims_metadatathumbnails business table. One index is created on the
ims_metadatathumbnails business table. ArcSDE creates the following default
IMS_METADATATHUMBNAILS keyword in the DBTUNE table if the keyword is
missing from the DBTUNE file when it is imported.

##IMS_METADATATHUMBNAILS

B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 4M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 256K)
NOLOGGING"

END

The IMS_METADATAUSERS keyword controls storage of the ims_metadatausers
business table. One index is created on the ims_metadatausers business table. ArcSDE
creates the following default IMS_METADATAUSERS keyword in the DBTUNE table
if the keyword is missing from the DBTUNE file when it is imported.

##IMS_METADATAUSERS

B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 7M)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 512K)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 512K)
NOLOGGING"

END

The IMS_METADATAVALUES keyword controls the storage of the
ims_metadatavalues business table. Two indexes are created on the ims_metadatavalues

Chapter 3—Configuring DBTUNE storage parameters 53

business table. ArcSDE creates the following default IMS_METADATAVALUES
keyword in the DBTUNE table if the keyword is missing from the DBTUNE file when
it is imported.

##IMS_METADATAVALUES

B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 7M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 512K)
NOLOGGING"

END

The IMS_METADATAWORDINDEX keyword controls the storage of the
ims_metadatawordindex business table. Three indexes are created on the
ims_metadatawordindex business table. ArcSDE creates the following default
IMS_METADATAWORDINDEX keyword in the DBTUNE table if the keyword is
missing from the DBTUNE file when it is imported.

##IMS_METADATAWORDINDEX

B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 10M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 512K)
NOLOGGING"

END

The IMS_METADATAWORDS keyword controls the storage of the
ims_metadatawords business table. One index is created on the ims_metadatawords
business table. ArcSDE creates the following default IMS_METADATAWORDS
keyword in the DBTUNE table if the keyword is missing from the DBTUNE file when
it is imported.

##IMS_METADATAWORDS

B_STORAGE "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 7M)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 512K)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (INITIAL 512K)
NOLOGGING"

END

Note: These keywords are now obsolete. They will not be used by ArcSDE or ArcIMS
Metadata Services. The gazetteer import scripts provided with ArcIMS 9.1 do not use
the above keywords to load the gazetteer data into ArcSDE. For information on
configuring XML storage, see Appendix F, ‘Storing XML Data’, of this document.

54 ArcSDE Configuration and Tuning Guide for Oracle

Setting the geometry storage format—the
GEOMETRY_STORAGE parameter

ArcSDE for Oracle provides four spatial data storage formats. The
GEOMETRY_STORAGE parameter indicates which geometry storage method is to be
used. The GEOMETRY_STORAGE parameter has the following values:

• ArcSDE compressed binary stored in LONG RAW data type. This is the default
spatial storage method of ArcSDE for Oracle.

Set the GEOMETRY_STORAGE parameter to SDEBINARY if you want to store
your spatial data in this format. If the GEOMETRY_STORAGE parameter is not
set, the SDEBINARY format is assumed.

• ArcSDE compressed binary stored as a BLOB data type. This data type can be
replicated through Oracle Advanced Replication.

Set the GEOMETRY_STORAGE parameter to SDELOB if you want to store your
spatial data in this format. If you want to make this format the default, set the
GEOMETRY_STORAGE parameter to SDELOB in the DEFAULTS
configuration keyword.

• Oracle Spatial geometry type. This object relational type extends the database
model to include an SDO_GEOMETRY type in the Oracle DBMS.

Set the GEOMETRY_STORAGE parameter to SDO_GEOMETRY if you want to
store your spatial data in this format. If you want to make this format the default, set
the GEOMETRY_STORAGE parameter to SDO_GEOMETRY in the
DEFAULTS configuration keyword.

• OGC well-known binary (WKB) geometry type. This type provides a portable
representation of a geometry as a contiguous stream of bytes.

Set the GEOMETRY_STORAGE parameter to OGCWKB if you want to store
your spatial data in this format. If you want to make this format the default, set the
GEOMETRY_STORAGE parameter to OGCWKB in the DEFAULTS
configuration keyword.

The OGCWKB representation supports only simple 2D geometries. See Appendix E
for a description of the OGCWKB.

The default value for GEOMETRY_STORAGE is SDEBINARY.

Chapter 3—Configuring DBTUNE storage parameters 55

If all the feature classes in your database use the same geometry storage method, set the
GEOMETRY_STORAGE parameter once in the DEFAULTS configuration keyword.
To change the default GEOMETRY_STORAGE from SDEBINARY to
SDO_GEOMETRY, the following change is made:

DEFAULTS
GEOMETRY_STORAGE "SDO_GEOMETRY"
<other parameters>
END

For convenience, four predefined configuration keywords are provided in the installed
dbtune.sde file to allow the use of each of the supported geometry storage methods.
These configurations are defined as follows:

SDEBINARY
GEOMETRY_STORAGE "SDEBINARY"
END
##SDELOB
GEOMETRY_STORAGE "SDELOB"
END
SDO_GEOMETRY
GEOMETRY_STORAGE "SDO_GEOMETRY"
END
##WKB_GEOMETRY
GEOMETRY_STORAGE "OGCWKB"

Note: During the installation of ArcSDE on Windows, the ArcSDE installation allows
you to choose the default spatial storage type. Depending on your selection, ArcSDE
will load the DBTUNE table with the contents of one of three files, dbtune.lr,
dbtune.blob, or dbtune.gt.

Setting the raster storage format—the RASTER_STORAGE
parameter

ArcSDE provides three raster storage formats for Oracle. The RASTER_STORAGE
parameter indicates which geometry storage method is to be used. The
RASTER_STORAGE parameter has the following values:

• ArcSDE raster stored in LONG RAW data type. This is the default raster storage
method of ArcSDE for Oracle.

Set the RASTER_STORAGE parameter to LONG RAW if you want to store your
raster data in this format. If the RASTER_STORAGE parameter is not set, the
LONG RAW format is assumed.

• ArcSDE raster stored as a BLOB data type. This data type can be replicated through
Oracle Advanced Replication.

56 ArcSDE Configuration and Tuning Guide for Oracle

Set the RASTER_STORAGE parameter to BLOB if you want to store your raster
data in this format. If you want to make this format the default, set the
RASTER_STORAGE parameter to BLOB in the DEFAULTS configuration
keyword.

• Oracle GeoRaster type. This object relational type extends the database model to
include an SDO_GEORASTER type in the Oracle DBMS.

Set the RASTER_STORAGE parameter to SDO_GEORASTER if you want to
store your spatial data in this format. If you want to make this format the default, set
the RASTER_STORAGE parameter to SDO_GEOMETRY in the DEFAULTS
configuration keyword.

The default value for RASTER_STORAGE is LONG RAW.

If all the raster columns in your database use the same raster storage format, set the
RASTER_STORAGE parameter once in the DEFAULTS configuration keyword. To
change the default RASTER_STORAGE from LONG RAW to SDO_GEORASTER,
the following change is made:

DEFAULTS
RASTER_STORAGE "SDO_GEORASTER"
<other parameters>
END

The RASTER_STORAGE parameter supersedes the RASTER_BINARY_TYPE which
continues to work but is no longer supported.

Setting the COMPRESS_ROLLBACK_SEGMENT storage
parameter

Periodically compressing the versioned database’s state tree is a required maintenance
procedure. The state tree can be compressed with either the compress operation of the
sdeversion administration command or the SE_state_compress_tree() C API function.

The transactions of the compress operation tend to be large; if you are using the Oracle
manual undo method, ESRI recommends that you create a separate large rollback
segment to contain their changes. The COMPRESS_ROLLBACK_SEGMENT storage
parameter stores the name of a rollback segment that you have created for this purpose.
Add the COMPRESS_ROLLBACK_SEGMENT storage parameter to the DEFAULTS
configuration keyword.

For more information on creating the rollback segment used for compressing the state
tree, see Chapter 2, ‘Essential Oracle configuring and tuning’.

Chapter 3—Configuring DBTUNE storage parameters 57

Changing the ATTRIBUTE_BINARY storage format

ArcSDE defines attribute columns used to store binary data as LONG RAW or as
BLOB. The default is LONG RAW.

If the storage parameter is not set in the DEFAULTS configuration keyword when a
DBTUNE file is imported by the sdedbtune administration tool, ArcSDE inserts the
ATTRIBUTE_BINARY storage parameter under the DEFAULTS configuration
keyword with a configuration string set to LONG RAW.

Changing the appearance of DBTUNE configuration
keywords in the ArcGIS user interface

ArcSDE provides UI_TEXT and UI_NETWORK_TEXT storage parameters that allow
you to change the appearance of the configuration keywords in the ArcGIS user
interfaces.

ArcSDE administrators can add one of these storage parameters to each configuration
keyword to communicate to the ArcGIS schema builders the intended use of the
configuration keyword. The configuration string of these storage parameters will appear
in the ArcGIS interface DBTUNE configuration keyword scrolling lists.

The UI_TEXT storage parameter should be added to configuration keywords that will
be used to build tables, feature classes, and indexes.

The UI_NETWORK_TEXT storage parameter should be added to parent network
configuration keywords.

Adding a comment to a configuration keyword

The COMMENT storage parameter allows you to add informative text that describes
such things as a configuration keyword’s intended use, the last time it was changed, or
who created it.

LOGFILE configuration keywords

Log files are used by ArcSDE to maintain temporary and persistent sets of selected
records.

The LOGFILE_DEFAULTS keyword holds the parameter group for all users who do
not have their own keyword created. Alternatively, you may create individual log file
keywords for specific users by appending the user’s name to the LOGFILE_ prefix to

58 ArcSDE Configuration and Tuning Guide for Oracle

form the keyword name. For example, if the user’s name is STANLEY, ArcSDE will
search the DBTUNE table for the LOGFILE_STANLEY configuration keyword. If this
configuration keyword is not found, ArcSDE will use the storage parameters of the
LOGFILE_DEFAULTS configuration keyword.

ArcSDE always creates the DBTUNE table with a LOGFILE_DEFAULTS
configuration keyword. If you do not specify this configuration keyword in a DBTUNE
file imported by the sdedbtune command, ArcSDE will populate the DBTUNE table
with software default LOGFILE_DEFAULTS storage parameters. Further, if the
DBTUNE file lacks some of the LOGFILE_DEFAULTS configuration keyword storage
parameters, ArcSDE supplies the rest. Therefore, the LOGFILE_DEFAULTS
configuration keyword is always fully populated.

If a user-specific configuration keyword exists but some of the storage parameters are
not present, the storage parameters of the LOGFILE_DEFAULTS configuration
keyword are used.

The storage parameters that are used depend on which type of log files the server has
been configured to use. If the ArcSDE server is configured to use shared log files,
ArcSDE creates the log file tables SDE_LOGFILES and SDE_LOGFILE_DATA and
indexes the first time the user connects.

For the creation of shared log file tables, the LD_STORAGE and LF_STORAGE
parameters control the storage of the SDE_LOGFILE_DATA and SDE_LOGFILES
tables. By default, these tables are created with Oracle logging turned on (the Oracle
NOLOGGING parameter is absent from the configuration string of these parameters). If
you are not using a customized application that stores persistent log files, you should add
NOLOGGING to the LD_STORAGE and LF_STORAGE parameters. ESRI
applications accessing ArcSDE data use temporary log files.

The LF_INDEXES parameter defines the storage of the indexes of the
SDE_LOGFILES table, while the LD_INDEX_DATA_ID and LD_INDEX_ROWID
parameters define the storage of the SDE_LOGFILE_DATA table.

Creating a log file configuration keyword for each user allows you to position the SDE
user’s log files on separate devices by specifying the tablespace the log file tables and
indexes are created in. Most installations of ArcSDE will function well using the
LOGFILE_DEFAULTS storage parameters supplied with the installed dbtune.sde file.
However, for applications using SDE log files, such as ArcGIS Desktop, it may help
performance by spreading the log files across the file system. Typically, log files are
updated whenever a selection set exceeds 100 records.

Chapter 3—Configuring DBTUNE storage parameters 59

If you have configured the server to use session-based or standalone log files in addition
to shared log files, ArcSDE will use a different set of storage parameters when it creates
the session-based and standalone log file tables.

The SESSION_STORAGE parameter defines the storage of the session-based and
standalone log file tables, which include both session and standalone types.

The SESSION_INDEX parameter defines the storage of the session-based and
standalone log file table indexes.

If the imported DBTUNE file does not contain a LOGFILE_DEFAULTS configuration
keyword or if any of the log file storage parameters are missing, ArcSDE will insert the
following records:

##LOGFILE_DEFAULTS

LD_INDEX_DATA_ID "PCTFREE 10 INITRANS 2 NOLOGGING"
LD_INDEX_ROWID "PCTFREE 10 INITRANS 2 NOLOGGING"
LD_STORAGE "PCTFREE 10 INITRANS 1"
LF_INDEXES "PCTFREE 10 INITRANS 2 NOLOGGING"
LF_STORAGE "PCTFREE 10 INITRANS 1"
SESSION_STORAGE "PCTFREE 10 INITRANS 1"
SESSION_INDEX "PCTFREE 10 INITRANS 2 NOLOGGING"
UI_TEXT ""

END

Network class composite configuration keywords

The composite keyword is a unique type of configuration keyword designed to
accommodate the tables of the ArcGIS network class. The network table’s size variation
requires a configuration keyword that provides configuration storage parameters for both
large and small tables. Typically, the network descriptions table is large compared with
the others.

To accommodate the vast difference in the size of the network tables, the network
composite configuration keyword is subdivided into elements. A network composite
configuration keyword has three elements: the parent element defines the general
characteristic of the configuration keyword and the junctions feature class, the
description element defines the configuration of the DESCRIPTIONS table and its
indexes, and the network element defines the configuration of the remaining network
tables and their indexes.

The parent element does not have a suffix, and its configuration keyword looks like any
other configuration keyword. The description element is demarcated by the addition of
the ::DESC suffix to the parent element’s configuration keyword, and the network

60 ArcSDE Configuration and Tuning Guide for Oracle

element is demarcated by the addition of the ::NETWORK suffix to the parent element’s
configuration keyword.

For example, if the parent element configuration keyword is called ELECTRIC, the
network composite configuration keyword would appear in a DBTUNE file as follows:

##ELECTRIC

COMMENT This configuration keyword is dedicated to the electrical
geometric network class

UI_NETWORK_TEXT "The electrical geometrical network class configuration
keyword"

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
500M)"

B_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

B_INDEX_SHAPE "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

F_STORAGE "TABLESPACE FEATURE INITRANS 4 PCTFREE 0 STORAGE (INITIAL
500M)"

F_INDEX_FID "TABLESPACE FEATURE_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

F_INDEX_LEN "TABLESPACE FEATURE_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

F_INDEX_AREA "TABLESPACE FEATURE_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

S_STORAGE "TABLESPACE SPATIAL INITRANS 4 PCTFREE 10 STORAGE (INITIAL
200M)"

S_INDEX_ALL "TABLESPACE SPATIAL_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 200M) NOLOGGING"

S_INDEX_SP_FID "TABLESPACE SPATIAL_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 50M) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M)"

A_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

Chapter 3—Configuring DBTUNE storage parameters 61

A_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10
STORAGE (INITIAL 20M) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

END

##ELECTRIC::DESC

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 500M)"

B_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 500M)"

A_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10
STORAGE (INITIAL 20M) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10
STORAGE (INITIAL 20M) NOLOGGING"

END

##ELECTRIC::NETWORK

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M)"

62 ArcSDE Configuration and Tuning Guide for Oracle

B_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M)"

A_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10
STORAGE (INITIAL 1M) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10
STORAGE (INITIAL 1M) NOLOGGING"

END

Following the import of the DBTUNE file, these records would be inserted into the
DBTUNE table:

SQL> select keyword, parameter_name from DBTUNE;

KEYWORD PARAMETER_NAME
---------------- ----------------
ELECTRIC COMMENT
ELECTRIC UI_NETWORK_TEXT
ELECTRIC B_STORAGE
ELECTRIC B_INDEX_ROWID
ELECTRIC B_INDEX_SHAPE
ELECTRIC B_INDEX_USER
ELECTRIC F_STORAGE
ELECTRIC F_INDEX_FID
ELECTRIC F_INDEX_LEN
ELECTRIC F_INDEX_AREA
ELECTRIC S_STORAGE
ELECTRIC S_INDEX_ALL
ELECTRIC S_INDEX_SP_FID
ELECTRIC A_STORAGE
ELECTRIC A_INDEX_ROWID
ELECTRIC A_INDEX_SHAPE
ELECTRIC A_INDEX_USER
ELECTRIC A_INDEX_STATEID

Chapter 3—Configuring DBTUNE storage parameters 63

ELECTRIC D_STORAGE
ELECTRIC D_INDEX_DELETED_AT
ELECTRIC D_INDEX_STATE_ROWID
ELECTRIC::DESC B_STORAGE
ELECTRIC::DESC B_INDEX_ROWID
ELECTRIC::DESC B_INDEX_USER
ELECTRIC::DESC A_STORAGE
ELECTRIC::DESC A_INDEX_ROWID
ELECTRIC::DESC A_INDEX_STATEID
ELECTRIC::DESC A_INDEX_USER
ELECTRIC::DESC D_STORAGE
ELECTRIC::DESC D_INDEX_DELETE_AT
ELECTRIC::DESC D_INDEX_STATE_ROWID
ELECTRIC::NETWORK B_STORAGE
ELECTRIC::NETWORK B_INDEX_ROWID
ELECTRIC::NETWORK B_INDEX_USER
ELECTRIC::NETWORK A_STORAGE
ELECTRIC::NETWORK A_INDEX_ROWID
ELECTRIC::NETWORK A_INDEX_STATEID
ELECTRIC::NETWORK A_INDEX_USER
ELECTRIC::NETWORK D_STORAGE
ELECTRIC::NETWORK D_INDEX_DELETE_AT
ELECTRIC::NETWORK D_INDEX_STATE_ROWID

The network junctions feature class is created with the ELECTRIC configuration
keyword storage parameters, the network descriptions table is created with the storage
parameters of the ELECTRIC::DESC configuration keyword, and the remaining smaller
network tables are created with the ELECTRIC::NETWORK configuration keyword.

The NETWORK_DEFAULTS configuration keyword

The NETWORK_DEFAULTS configuration keyword contains the default storage
parameters for the ArcGIS network class. If you do not choose a network class
composite configuration keyword from the ArcCatalog interface, the ArcGIS network is
created with the storage parameters within the NETWORK_DEFAULTS configuration
keyword.

Whenever a network class composite configuration keyword is selected, its storage
parameters are used to create the feature class, table, and indexes of the network class. If
a network composite configuration keyword is missing any storage parameters, ArcGIS
substitutes the storage parameters of the DEFAULTS configuration keyword, rather than
the NETWORK_DEFAULTS configuration keyword. The storage parameters of the
NETWORK_DEFAULTS configuration keyword are used when a network composite
configuration keyword has not been specified.

If a NETWORK_DEFAULTS configuration keyword is not present in a DBTUNE file
imported into the DBTUNE table, the following NETWORK_DEFAULTS
configuration keyword is created:

64 ArcSDE Configuration and Tuning Guide for Oracle

##NETWORK_DEFAULTS

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
A_STORAGE "PCTFREE 10 INITRANS 4"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
B_STORAGE "PCTFREE 10 INITRANS 4"
COMMENT "The base system initialization parameters for NETWORK_DEFAULTS"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
D_STORAGE "PCTFREE 10 INITRANS 4"
F_INDEX_AREA "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
F_INDEX_LEN "PCTFREE 10 INITRANS 4 NOLOGGING"
F_STORAGE "PCTFREE 0 INITRANS 4"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 NOLOGGING"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 NOLOGGING"
S_STORAGE "PCTFREE 0 INITRANS 4"
UI_NETWORK_TEXT "The network default configuration"
END

##NETWORK_DEFAULTS::DESC

A_INDEX_ROWID "PCTFREE 10 INITRANS 4"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4"
A_INDEX_USER "PCTFREE 10 INITRANS 4"
A_STORAGE "PCTFREE 0 INITRANS 4"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
B_STORAGE "PCTFREE 0 INITRANS 4"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
D_STORAGE "PCTFREE 0 INITRANS 4"
END

##NETWORK_DEFAULTS::NETWORK

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_STATEID "PCTFREE 10 INITRANS 4 NOLOGGING"
A_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
A_STORAGE "PCTFREE 0 INITRANS 4"
B_INDEX_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 NOLOGGING"
B_INDEX_USER "PCTFREE 10 INITRANS 4 NOLOGGING"
B_STORAGE "PCTFREE 0 INITRANS 4"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 NOLOGGING"
D_STORAGE "PCTFREE 0 INITRANS 4"
END

Chapter 3—Configuring DBTUNE storage parameters 65

Oracle Spatial DBTUNE storage parameters
Oracle Spatial feature classes are ArcSDE feature classes with Oracle’s
SDO_GEOMETRY data type to store feature geometry in a column in the business
table. Many of the storage parameters used for ArcSDE compressed binary feature
classes apply to Oracle Spatial feature classes. Also, some storage parameters exist
solely to establish how Oracle Spatial feature classes are stored, indexed, and accessed.

For a description of Oracle Spatial, consult the Oracle Spatial User’s Guide and
Reference. For more information about how Oracle Spatial and ArcSDE work together,
see Appendix D of this document.

Creating new business tables

ArcSDE uses the B_STORAGE, B_INDEX_ROWID, and B_INDEX_USER storage
parameters to store the business table and the nonspatial indexes on the business table.

Creating Oracle Spatial metadata for new feature classes

The database view USER_SDO_GEOM_METADATA is part of Oracle Spatial, not
ArcSDE. It contains metadata about SDO_GEOMETRY columns in existing tables
owned by the user. Each user has its own USER_SDO_GEOM_METADATA view. To
be indexed and queried, the owner of the table must record metadata for each
SDO_GEOMETRY column in USER_SDO_GEOM_METADATA. The ArcSDE
clients that create a feature class will choose the metadata for the feature class. Often,
these clients accept a configuration keyword corresponding to a parameter group in the
DBTUNE table.

The storage parameters that control the metadata for new Oracle Spatial feature classes
are:

SDO_DIMNAME_<n>
SDO_LB_<n>
SDO_UB_<n>
SDO_TOLERANCE_<n>
SDO_SRID

Oracle Spatial permits feature geometries of two, three, or four dimensions in the
combinations X/Y, X/Y/Z, X/Y/M (measure), or X/Y/Z/M. Through these storage
parameters, ArcSDE allows you to specify metadata for each dimension. The <n> in
some parameter names should be replaced by one of the digits 1, 2, 3, or 4,
corresponding to the dimension number. If you do not supply these storage parameters,

66 ArcSDE Configuration and Tuning Guide for Oracle

the ArcSDE client application that creates the feature class will determine the name,
upper and lower bound (extent), and tolerance of each dimension.

Creating a spatial index

The DBTUNE parameter SDO_INDEX_SHAPE determines how Oracle Spatial creates
the spatial index. ArcSDE appends the contents of this parameter (the configuration
string) to the CREATE INDEX statement before submitting the statement to Oracle. The
configuration string is inserted into the SQL statement after the PARAMETERS
keyword. For example:

CREATE INDEX MY_SP_INDEX ON MY_SP_TABLE(SHAPE)
INDEXTYPE IS MDSYS.SPATIAL_INDEX
PARAMETERS (<configuration string is inserted here>);

The configuration string is a quoted string containing a list of parameter = value
elements. There are many parameters that you can specify in the configuration string. To
understand the Oracle Spatial index parameters and how they interact, read the
applicable sections of the Oracle Spatial User’s Guide and Reference.

Notice the differences between the physical storage parameters in the spatial index
configuration string and in a business table configuration string (as specified in
B_STORAGE). One difference is due to the way Oracle expects these parameters to
appear in SQL statements. The Oracle statements are formatted differently, so the
configuration strings are formatted differently. Also, not every physical storage
parameter used for creating tables is available for creating spatial indexes.

B_STORAGE "TABLESPACE ORSPBIZ PCTFREE 10 INITRANS 4
STORAGE(INITIAL 512000)"

SDO_INDEX_SHAPE "tablespace=ORSPIDX initial=512000"

Verifying polygon rotation

Both ArcSDE and Oracle Spatial expect that exterior polygon boundaries are stored in
counterclockwise rotation and that inner boundaries are stored clockwise. If the rotation
polygon boundary is not stored with this rotation, then the polygon will fail the ArcSDE
topographic validation test and will not be sent to the ArcSDE client. The
SDO_VERIFY storage parameter tells ArcSDE whether it should check (and reorder, if
necessary) the rotation of polygon boundaries as they are fetched from Oracle Spatial.
This check happens automatically for autoregistered Oracle Spatial feature classes. You
should consider using this parameter for third party Oracle Spatial tables that you
manually register—for example, using the “sdelayer” command. Unlike other
parameters used for storing and indexing feature classes, this parameter is used when a
feature class is read from the database.

Chapter 3—Configuring DBTUNE storage parameters 67

Sample DBTUNE parameter groups for Oracle Spatial feature
classes

This section presents DBTUNE parameter groups that apply to several common
scenarios. These samples emphasize the storage parameters for Oracle Spatial feature
classes. When designing your own parameter groups, you may want to add parameters
to support other needs, such as geometric networks or log files. You could also satisfy
these requirements via parameters in the DEFAULTS parameter group.

In some examples, you will see the parameter sdo_indx_dims=2, which specifies how
many dimensions should be indexed with an R-tree spatial index. With Oracle 9.2, the
default value is 2, meaning the first two dimensions, X and Y. For previous versions of
Oracle, the default value was the number of dimensions recorded in
USER_SDO_GEOM_METADATA. There were various problems creating R-tree
spatial indexes on dimensions other than X and Y. For example, Oracle does not support
R-tree indexes on the measure dimension. If you are creating R-tree spatial indexes and
are using a version of Oracle prior to 9.2, it is recommended you always include this
parameter.

If you are not using Oracle Spatial by default, you can create a simple parameter group
to create Oracle Spatial feature classes with mostly default settings. The tables and
indexes will be created in the user’s default tablespace using default physical storage
parameters, unless specified otherwise in the DEFAULTS parameter group. The spatial
index will be a two dimensional R-tree.

##SDO_GEOMETRY
GEOMETRY_STORAGE "SDO_GEOMETRY"
SDO_INDEX_SHAPE "sdo_indx_dims=2"
UI_TEXT "Oracle Spatial: default settings"
END

With Oracle Spatial, if data is often loaded using a specific spatial reference identifier
(SRID), such as the geodetic SRID 8307 (Latitude/Longitude WGS 84), you can create
an expanded version of the previous parameter group. You don’t have to specify the
upper and lower bounds and tolerance, but you can if you want all your feature classes to
have the same metadata for the X and Y dimensions. This is useful if you want to use the
feature classes in the same feature dataset. Also, this case specifies that any polygon
boundaries with reversed rotation will be reordered before sending them to ArcSDE
clients.

Note: With Oracle9i geodetic data, the extents are specified in decimal degrees and the
tolerances are specified in meters.

68 ArcSDE Configuration and Tuning Guide for Oracle

##SDO_GEOMETRY_8307
GEOMETRY_STORAGE "SDO_GEOMETRY"
SDO_INDEX_SHAPE "sdo_indx_dims=2"
SDO_SRID 8307
SDO_DIMNAME_1 "Lon"
SDO_LB_1 -180.000000
SDO_UB_1 180.000000
SDO_TOLERANCE_1 0.001
SDO_DIMNAME_2 "Lat"
SDO_LB_2 -90.000000
SDO_UB_2 90.000000
SDO_TOLERANCE_2 0.001
SDO_VERIFY TRUE
UI_TEXT "Oracle Spatial: WGS84"
END

The following example can be used to load a feature class with an R-tree spatial index
into a tablespace called ORSPBIZ. The R-tree spatial index will be created in the
tablespace ORSPIDX. The ArcSDE client that is loading the data will decide the values
for the metadata.

##SDO_GEOMETRY_ORSPBIZ
GEOMETRY_STORAGE "SDO_GEOMETRY"
B_STORAGE "TABLESPACE ORSPBIZ"
SDO_INDEX_SHAPE "tablespace=ORSPIDX sdo_indx_dims=2"
UI_TEXT "Tablespace ORSPBIZ / ORSPIDX"
END

The following example can be used to load a feature class with a quadtree spatial index
having a fixed-sized tiling level (tessellation level) of 6. The spatial index will be created
in the tablespace ORSPIDX. Commit interval is important for quadtree indexes. It
indicates the number of business table records that will be processed before committing
the index data. Without it, all the records of the business table are processed before
committing the index data. This will cause problems when indexing tables with many
records.

Note: The parameter sdo_commit_interval is so important that ArcSDE automatically
includes it in SQL indexing statements for Oracle Spatial tables, even if you do not
specify it as part of the SDO_INDEX_SHAPE parameter. It is set to 1,000.

##SDO_GEOMETRY_QT_6
GEOMETRY_STORAGE "SDO_GEOMETRY"
SDO_INDEX_SHAPE "tablespace=ORSPIDX sdo_level=6

sdo_commit_interval=1000"
END

Oracle default parameters
By default, Oracle stores tables and indexes in the user’s default tablespace using the
tablespace’s default storage parameters. Determine a user’s default tablespace by
querying the DEFAULT_TABLESPACE field of the USER_USERS Oracle system

Chapter 3—Configuring DBTUNE storage parameters 69

table when connected as that user. As the Oracle DBA, query the
DEFAULT_TABLESPACE field of the DBA_USERS table using a Where clause to
specify the user.

SQL> connect <user>/<password>
SQL> select default_tablespace from user_users;

or

SQL> connect system/<password>
SQL> select default_tablespace from dba_users where username = <user>;

Obtain a list of default storage parameters for a tablespace by querying
USER_TABLESPACES:

SQL> connect <user>/<password>
SQL> select * from user_tablespaces where tablespace_name = <tablespace>;

Converting previous versions of SDE storage parameters
into the DBTUNE table

For older versions of the Spatial Database Engine, the DBTUNE storage parameters
were maintained in the dbtune.sde file. The storage parameters of these previous
versions were mapped directly to each Oracle storage parameter. For example, the
obsolete F_TBLSP storage parameter holds the name of the feature table’s tablespace.

Beginning at ArcSDE 8.1, storage parameters hold entire configuration strings of the
table or index they represent. For example, the F_STORAGE parameter holds the
configuration string of the feature table. Any legal Oracle storage parameter listed to the
right of the columns clause of the Oracle CREATE TABLE statement can be listed in
the F_STORAGE parameter. Therefore, the F_STORAGE parameter incorporates all
the obsolete feature table storage parameters.

If you are upgrading to ArcSDE 8.1 or higher from a version of ArcSDE prior to
ArcSDE 8.1, the conversion of the DBTUNE files’ storage parameters occurs
automatically when the sdesetupora* utility reads the storage parameters from the
previous version’s dbtune.sde file. The import operation of the sdedbtune command will
convert a DBTUNE file into current ArcSDE storage parameters before it writes them to
the DBTUNE table. To see the results, you can either use SQL*Plus to list the storage
parameters of the DBTUNE table, or write the storage parameters of the DBTUNE table
to another file using the export operation of the sdedbtune command.

The following table lists the conversion of ArcSDE 8.0.2 software-style storage
parameters to ArcSDE 9 software-style storage parameters.

70 ArcSDE Configuration and Tuning Guide for Oracle

ArcSDE 8.0.2 storage parameters

INDEX_TABLESPACE ROADS_IX

A_IX1_INIT 10M
A_IX1_NEXT 5M
A_MINX 1
A_MAXX 200
A_PCTI 0
A_ITRANS 5
A_MAXTRS 255
A_PCTFREE 10

ArcSDE 9 storage parameters

B_INDEX_SHAPE "TABLESPACE ROADS_IX
 STORAGE (INITIAL 10M)
 INITRANS 5
 PCTFREE 10"

ArcSDE 8.0.2 storage parameters

A_TBLSP ROADS
A_INIT 10M
A_NEXT 5M
A_MINX 1
A_MAXX 200
A_PCTI 0
A_ITRANS 5
A_MAXTRS 255
A_PCTFREE 10
A_PCTUSD 90

ArcSDE 9 storage parameters

B_STORAGE "TABLESPACE ROADS
 STORAGE (INITIAL 10M)
 INITRANS 5
 PCTFREE 10"

The ArcSDE 8.0.2 business table and index parameter prefix is “A_”. The ArcSDE 9 business table and index
parameter prefix is “B_”. The ArcSDE 8.0.2 business table storage parameters are converted to the single ArcSDE 9
B_STORAGE parameter. The B_STORAGE parameter holds the entire business table’s configuration string.

The ArcSDE 8.0.2 business table index storage parameters are converted to ArcSDE 9 storage parameter
configuration strings. The example below illustrates how the ArcSDE 8.0.2 storage parameters are converted into
the ArcSDE 9 spatial column index storage parameter B_INDEX_SHAPE. The other ArcSDE 9 business table index
storage parameters, B_INDEX_ROWID and B_INDEX_USER, are also constructed this way.

Chapter 3—Configuring DBTUNE storage parameters 71

ArcSDE 8.0.2 storage
parameters

INDEX_TABLESPACE ROADS_F_IX

F_IX1_INIT 10M
F_IX1_NEXT 5M
F_MINX 1
F_MAXX 200
F_PCTI 0
F_ITRANS 5
F_MAXTRS 255

ArcSDE 9 storage parameters

F_INDEX_FID "TABLESPACE ROADS_F_IX
 STORAGE (INITIAL 10M)
 INITRANS 5
 PCTFREE 10"

ArcSDE 8.0.2 storage parameters

F_TBLSP ROADS_F

F_INIT 10M
F_NEXT 5M
F_MINX 1
F_MAXX 200
F_PCTI 0
F_ITRANS 5
F_MAXTRS 255
F_PCTFREE 10
F_PCTUSD 90

ArcSDE 9 storage parameters

F_STORAGE "TABLESPACE ROADS_F
 STORAGE (INITIAL 10M)
 INITRANS 5
 PCTFREE 10"

The ArcSDE 8.0.2 feature table storage parameters are converted to the ArcSDE 9 F_STORAGE parameter.
The F_STORAGE parameter holds the entire feature table’s configuration string.

The ArcSDE 8.0.2 feature table index storage parameters are converted to ArcSDE 9 storage parameter
configuration strings. The example below illustrates how the ArcSDE 8.0.2 storage parameters are converted into
the ArcSDE 9 FID column index storage parameter F_INDEX_FID. The other ArcSDE 9 feature table index
storage parameters, F_INDEX_AREA and F_INDEX_LEN, are also constructed this way.

72 ArcSDE Configuration and Tuning Guide for Oracle

ArcSDE 8.0.2 storage parameters

INDEX_TABLESPACE ROADS_S_IX

S_IX1_INIT 10M
S_IX1_NEXT 5M
S_MINX 1
S_MAXX 200
S_PCTI 0
S_ITRANS 5
S_MAXTRS 255
S_PCTFREE 10

ArcSDE 9 storage parameters

S_INDEX_ALL "TABLESPACE ROADS_S_IX
 STORAGE (INITIAL 10M)
 INITRANS 5
 PCTFREE 10"

ArcSDE 8.0.2 storage parameters

S_TBLSP ROADS_S

S_INIT 10M
S_NEXT 5M
S_MINX 1
S_MAXX 200
S_PCTI 0
S_ITRANS 5
S_MAXTRS 255
S_PCTFREE 10
S_PCTUSD 90

ArcSDE 9 storage parameters

S_STORAGE "TABLESPACE ROADS_S
 STORAGE (INITIAL 10M)
 INITRANS 5
 PCTFREE 10"

The ArcSDE 8.0.2 spatial index table storage parameters are converted to the ArcSDE 9 S_STORAGE
parameter. The S_STORAGE parameter holds the entire spatial index table’s configuration string.

The ArcSDE 8.0.2 spatial index table storage parameters are converted to ArcSDE 9 storage parameter
configuration strings. The example below illustrates how the ArcSDE 8.0.2 index storage parameters are
converted into the ArcSDE 9 storage parameter S_INDEX_ALL. The S_INDEX_SP_FID storage parameter is
converted the same way except ArcSDE 8.0.2 storage parameters S_IX2_INIT and S_IX2_NEXT are used.

Chapter 3—Configuring DBTUNE storage parameters 73

The complete list of ArcSDE 9 storage parameters
Parameter Name Value Parameter Description Default Value

STATES_LINEAGES_TABLE <string> State_lineages table B_STORAGE

STATES_TABLE <string> States table B_STORAGE

STATES_INDEX <string> States indexes B_INDEX_USER

MVTABLES_MODIFIED_TABLE <string> Mvtables_modified table B_STORAGE

MVTABLES_MODIFIED_INDEX <string> Mvtables_modified index B_INDEX_USER

VERSIONS_TABLE <string> Versions table B_STORAGE

VERSIONS_INDEX <string> Version index B_INDEX_USER

COMPRESS_ROLLBACK_SEGMENT <string> Version compression rollback
segment (only applies to
databases that are using
manual undo space
management)

No default value

B_STORAGE <string> Business table “PCTFREE 0
INITRANS 4”

B_INDEX_ROWID <string> Business table object ID
column index

“PCTFREE 0
INITRANS 4
NOLOGGING”

B_INDEX_SHAPE <string> Business table spatial column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

B_INDEX_USER <string> Business table user indexes “PCTFREE 0
INITRANS 4
NOLOGGING”

74 ArcSDE Configuration and Tuning Guide for Oracle

Parameter Name Value Parameter Description Default Value

B_INDEX_RASTER <string> Business table raster column
index

"PCTFREE 0
INITRANS4
NOLOGGING"

B_INDEX_XML <string> Business table XML column
index table

“PCTFREE 0
INITRANS 4
NOLOGGING”

F_STORAGE <string> Feature table “PCTFREE 0
INITRANS 4”

F_INDEX_FID <string> Feature table FID column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

F_INDEX_AREA <string> Feature table area column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

F_INDEX_LEN <string> Feature table length column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

S_STORAGE <string> Spatial index table “PCTFREE 0
INITRANS 4”

S_INDEX_ALL <string> Spatial index table first index “PCTFREE 0
INITRANS 4
NOLOGGING”

S_INDEX_SP_FID <string> Spatial index table second
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

A_STORAGE <string> Adds table “PCTFREE 0
INITRANS 4”

A_INDEX_ROWID <string> Adds table object ID column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

Chapter 3—Configuring DBTUNE storage parameters 75

Parameter Name Value Parameter Description Default Value

A_INDEX_SHAPE <string> Adds table spatial column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

A_INDEX_STATEID <string> Adds table sde_state_id
column index

“PCTFREE 0
INITRANS 4
NOLOGGING”

A_INDEX_USER <string> Adds table index “PCTFREE 0
INITRANS 4
NOLOGGING”

A_INDEX_XML <string> Adds table XML column
index table

“PCTFREE 0
INITRANS 4
NOLOGGING”

D_STORAGE <string> Deletes table “PCTFREE 0
INITRANS 4”

D_INDEX_ STATE_ROWID <string> Deletes table sde_states_id and
sde_deletes_row_id column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

D_INDEX_DELETED_AT <string> Deletes table sde_deleted_at
column index

“PCTFREE 0
INITRANS 4
NOLOGGING”

LF_STORAGE <string> SDE shared log files table “PCTFREE 0
INITRANS 4”

LF_INDEXES <string> SDE shared log file table
column indexes

“PCTFREE 0
INITRANS 4
NOLOGGING”

LD_STORAGE <string> SDE shared log file data table “PCTFREE 0
INITRANS 4”

LD_INDEX_DATA_ID <string> SDE shared log file data table “PCTFREE 0
INITRANS 4
NOLOGGING”

76 ArcSDE Configuration and Tuning Guide for Oracle

Parameter Name Value Parameter Description Default Value

LD_INDEX_ROWID <string> SDE shared log file data table
SDE ROWID column index

“PCTFREE 0
INITRANS 4
NOLOGGING”

SESSION_STORAGE <string> SDE session-based and
standalone log file tables

“PCTFREE 0
INITRANS 4”

SESSION_INDEX <string> SDE session-based and
standalone log file indexes

“PCTFREE 0
INITRANS 4
NOLOGGING”

RAS_STORAGE <string> Raster RAS table “PCTFREE 0
INITRANS 4”

RAS_INDEX_ID <string> Raster RAS table RID index “PCTFREE 0
INITRANS 4
NOLOGGING”

BND_STORAGE <string> Raster BND table “PCTFREE 0
INITRANS 4”

BND_INDEX_COMPOSITE <string> Raster BND table composite
column index

“PCTFREE 0
INITRANS 4
NOLOGGING”

BND_INDEX_ID <string> Raster BND table RID column
index

“PCTFREE 0
INITRANS 4
NOLOGGING”

AUX_STORAGE <string> Raster AUX table “PCTFREE 0
INITRANS 4”

AUX_INDEX_COMPOSITE <string> Raster AUX table composite
column index

“PCTFREE 0
INITRANS 4
NOLOGGING”

BLK_STORAGE <string> Raster BLK table “PCTFREE 0
INITRANS 4”

Chapter 3—Configuring DBTUNE storage parameters 77

Parameter Name Value Parameter Description Default Value

BLK_INDEX_COMPOSITE <string> Raster BLK table composite
column index

“PCTFREE 0
INITRANS 4
NOLOGGING”

ATTRIBUTE_BINARY <string> Set this storage parameter to
LONG RAW or BLOB

LONG RAW (or
BLOB for
NETWORK_
DEFAULTS)

GEOMETRY_STORAGE <string> Set this storage parameter to
SDEBINARY, SDELOB,
OGCWKB, or
SDO_GEOMETRY

SDEBINARY

RASTER_STORAGE <string> Set the storage parameter to
LONG RAW, BLOB or
SDO_GEORASTER

LONG RAW

SDO_DIMNAME_1
SDO_DIMNAME_2
SDO_DIMNAME_3
SDO_DIMNAME_4

<string> The name of each dimension
for Oracle Spatial geometry
types

 “X”
 “Y”
 “Z”
 “M”

SDO_INDEX_SHAPE <string> The Oracle Spatial geometry
types spatial index storage
parameters

Oracle defaults

SDO_LB_1
SDO_LB_2
SDO_LB_3
SDO_LB_4

<floating-
point
number>

Lower dimension boundary for
Oracle Spatial geometry type;
units specified in coordinate
system of the data

Based on extent of
data to be loaded.

For Oracle9i data
with geodetic
SRID, SDO_LB_1
must be -180, and
SDO_LB_2 must
be -90.

78 ArcSDE Configuration and Tuning Guide for Oracle

Parameter Name Value Parameter Description Default Value

SDO_SRID <integer> Oracle Spatial coordinate
reference identifier assigned to
the SDO_GEOMETRY
column

NULL

SDO_TOLERANCE_1
SDO_TOLERANCE_2
SDO_TOLERANCE_3
SDO_TOLERANCE_4

<floating-
point
number>

The distance two ordinates can
be apart in the given
dimension and still be
considered the same; used by
Oracle Spatial functions; must
be greater than zero; for
Oracle9i geodetic data, units
are meters; otherwise, units are
specified in coordinate system
of the data

Oracle9i all data:
0.001

Oracle8i projected
data: 0.001

Oracle8i
unprojected data:
0.0000005

SDO_UB_1
SDO_UB_2
SDO_UB_3
SDO_UB_4

<floating-
point
number>

Upper dimension boundary for
Oracle Spatial geometry type;
used by Oracle Spatial
functions; must be greater than
zero; for Oracle9i geodetic
data, units are meters;
otherwise, units are specified
in coordinate system of the
data

Based on extent of
data to be loaded

For Oracle9i data
with geodetic
SRID, SDO_UB_1
must be 180, and
SDO_UB_2 must
be 90

SDO_VERIFY <bool> If TRUE, ArcSDE will verify
polygon boundary rotations as
they are accessed from Oracle
Spatial

FALSE

UI_TEXT <string> String describing configuration “”

XML_DOC_INDEX <string> Storage clause for
xmldoc<n>_pk index on the
sde_xml_doc<n> table

“PCTFREE 0
INITRANS 4
NOLOGGING”

XML_DOC_STORAGE <string> Storage clause for
sde_xml_doc<n> table

“PCTFREE 0
INITRANS 4”

Chapter 3—Configuring DBTUNE storage parameters 79

Parameter Name Value Parameter Description Default Value

XML_DOC_TEXT_TYPE <string> Data type for document text
column

“LONG RAW”

XML_IDX_INDEX_DOUBLE <string> Storage clause for the
xmlix<n>_db index on the
double_tag column of the
sde_xml_idx<n> table

“PCTFREE 0
INITRANS 4
NOLOGGING”

XML_IDX_INDEX_ID <string> Storage clause for the
xmlix<n>_id index on the
sde_xml_id column of
sde_xml_idx<n> table

“PCTFREE 0
INITRANS 4
NOLOGGING”

XML_IDX_INDEX_PK <string> Storage clause for
xmlix<n>_pk index on the
xml_key_column identity
column of the
sde_xml_idx<n> table

“PCTFREE 0
INITRANS 4
NOLOGGING”

XML_IDX_INDEX_TAG <string> Storage clause for the
xmlix<n>_tg index on the
tag_id column of the
sde_xml_idx<n> table

“PCTFREE 0
INITRANS 4
NOLOGGING”

XML_IDX_INDEX_TEXT <string> Index creation parameters (see
Oracle Text Reference)

“”

XML_IDX_STORAGE <string> Storage clause for
sde_xml_idx<n table

“PCTFREE 0
INITRANS 4”

80 ArcSDE Configuration and Tuning Guide for Oracle

Parameter Name Value Parameter Description Default Value

XML_IDX_TEXT_UPDATE_METHO
D

<string> Oracle Text index change
tracking method:

NONE: Manual update by
running Oracle Text package

BUFFERED: ArcSDE updates
when stream is closed

IMMEDIATE: ArcSDE
updates on row insert or
update

“NONE”

XML_INDEX_TAGS_INDEX <string> Storage clause for
xml_indextags_pk index (used
under DATA_DICTIONARY
keyword)

“INITRANS 5
STORAGE
(INITIAL 1M)”

XML_INDEX_TAGS_TABLE <string> Storage clause for
sde_xml_index_tags table
(used under
DATA_DICTIONARY
keyword)

“INITRANS 4
STORAGE
(INITIAL 1M)”

XML_TAGS_PK_INDEX <string> Storage clause for xml_tag_pk
index (used under
DATA_DICTIONARY
keyword)

“INITRANS 5
STORAGE
(INITIAL 1M)”

XML_TAGS_TABLE <string> Storage clause for sde_xml
_tags table (used under
DATA_DICTIONARY
keyword)

“INITRANS 4
STORAGE
(INITIAL 1M)”

XML_TAGS_UK_INDEX <string> Storage clause for
xml_tag_uk1 and xml_tag_uk2
indexes (used under
DATA_DICTIONARY
keyword)

“INITRANS 5
STORAGE
(INITIAL 1M)”

C H A P T E R 4

Managing tables, feature
classes, and raster columns

A fundamental part of any database is creating and loading the tables.

Tables with spatial columns are called standalone feature classes.

Attribute-only (nonspatial) tables are also an important part of any

database. This chapter will describe the table and feature class creation

and loading process.

Data creation
There are numerous applications that can create and load data within an ArcSDE Oracle
database. These include:

1. ArcSDE administration commands located in the bin directory of SDEHOME:

• sdelayer—Creates and manages feature classes.

• sdetable—Creates and manages tables.

• sdeimport—Takes an existing sdeexport file and loads the data into a feature
class.

• shp2sde—Loads an ESRI shapefile into a feature class.

• cov2sde—Loads a coverage, Map LIBRARIAN layer, or ArcStorm™ layer
into a feature class.

• tbl2sde—Loads an attribute-only dBASE® or INFO™ file into a table.

• sdegroup—A specialty feature class creation command that combines the
features of an existing feature class into single multipart features and stores
them in a new feature class for background display. The generated feature class
is used for rapid display of a large amount of geometry data. The attribute
information is not retained, and spatial searches cannot be performed on these
feature classes.

82 ArcSDE Configuration and Tuning Guide for Oracle

• sderaster—Creates, inserts, modifies, imports, and manages raster data stored in
an ArcSDE database.

These are all run from the operating system prompt. Command references for these tools
are in ArcSDE Developer Help.

Other applications include:

2. ArcGIS Desktop—Use ArcCatalog or ArcToolbox to manage and populate your
database.

3. ArcInfo Workstation—Use the Defined Layer interface to create and populate the
database.

4. ArcView® 3.2—Use the Database Access extension.

5. MapObjects®—Custom Component Object Model (COM) applications can be built
to create and populate databases.

6. ArcSDE CAD Client extension—For AutoCAD® and MicroStation® users.

7. Other third party applications built with either the C or Java™ APIs.

This document focuses primarily on the ArcSDE administration tools but does provide
some ArcGIS Desktop examples as well. In general, most people prefer an easy-to-use
graphic user interface like the one found in ArcGIS Desktop. For details on how to use
ArcCatalog or ArcToolbox (another desktop data loading tool), please refer to the
ArcGIS books:

• Using ArcCatalog

• Building a Geodatabase

Creating and populating a feature class
The general process involved with creating and loading a feature class is:

1. Create the business table.

2. Record the business table and the spatial column in the ArcSDE LAYERS and
GEOMETRY_COLUMNS system tables, thus adding a new feature class to the
database.

3. Switch the feature class to load_only_io mode—an optional step to improve bulk
data loading performance. It is OK to leave the feature class in normal_io mode to
load data.

4. Insert the records (load data).

5. Switch the feature class to normal_io mode (builds the indexes).

6. Version the data (optional).

7. Grant privileges on the data (optional).

Chapter 4—Managing tables, feature classes, and raster columns 83

In the following sections, this process is discussed in more detail and illustrated with
some examples of ArcSDE administration commands usage and ArcInfo data-loading
utilities through the ArcCatalog and ArcToolbox interfaces.

Creating a feature class “from scratch”

There are two basic ways to create a feature class. You can create a feature class from
scratch (requiring considerably more effort), or you can create a feature class from
existing data such as a coverage or ESRI shapefile. Both methods are reviewed below
with the “from scratch” method being first.

Creating a business table

You may create a business table with either the SQL CREATE TABLE statement or the
ArcSDE sdetable command. The sdetable command allows you to include a DBTUNE
configuration keyword containing the storage parameters of the table.

Although the table may be up to 256 columns, ArcSDE requires that only one of those
columns be defined as a spatial column.

In this example, the sdetable command is used to create the ‘roads’ business table.

sdetable -o create -t roads -d 'road_id integer, name string(32), shape
integer' -k roads -u beetle -p bug

The table is created using the DBTUNE configuration keyword (-k) ‘roads’ by user
beetle.

The same table could be created with a SQL CREATE TABLE statement using the
Oracle SQL*Plus interface.

create table roads
 (road_id integer,
 name varchar(32),
 shape integer)
 tablespace beetle_data
 storage (initial 16K next 8K);

At this point you have created a table in the database. ArcSDE does not yet recognize it
as a feature class. The next step is to record the spatial column in the ArcSDE LAYERS
and GEOMETRY_COLUMNS system tables and thus add a new feature class to the
database.

Adding a feature class

After creating a business table, you must add an entry for the spatial column in the
ArcSDE LAYERS system tables before the ArcSDE server can reference it. Use the
sdelayer command with the ‘-o add’ operation to add the new feature class.

In the following example, the roads feature class is added to the ArcSDE database. Note
that to add the feature class, the roads table name and the spatial column are combined to
form a unique feature class reference. To understand the purpose of the –e, –g, and –x
options, refer to the sdelayer command reference in ArcSDE Developer Help.

84 ArcSDE Configuration and Tuning Guide for Oracle

sdelayer -o add -l roads,shape -e l+ -g 256,0,0 -x 0,0,100 -u beetle -p
bug -k roads

If the spatial column of the feature class is stored in either LONG RAW or BLOB
ArcSDE compressed binary format, the feature and spatial index tables are created. The
feature class tables and indexes are stored according to the storage parameters of the
roads configuration keywords in the DBTUNE table. Upon successful completion of the
previous sdetable command—to create a table—and the sdelayer command—to record
the feature class in the ArcSDE system tables—you have an empty feature class in
normal_io mode.

Switching to load-only mode

Switching the feature class to load-only mode drops the spatial index and makes the
feature class unavailable to ArcSDE clients. Bulk loading data into the feature class in
this state is much faster due to the absence of index maintenance. Use the sdelayer
command to switch the feature class to load-only mode by specifying the -o load_only_io
operation.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug

Note: A feature class, registered as multiversioned, cannot be placed in the load-only I/O
mode.

Inserting records into the feature class

Once the empty feature class exists, the next step is to populate it with data. There are
several ways to insert data into a feature class, but probably the easiest method is to
convert an existing shapefile or coverage or import a previously exported ArcSDE
sdeexport file directly into the feature class.

In this first example, shp2sde is used with the init operation. The init operation is used on
newly created feature classes or can be used on feature classes when you want to
overwrite data that’s already there. Don’t use the init operation on feature classes that
already contain data unless you want to remove the existing data. Here, the shapefile,
rdshp, will be loaded into the feature class, roads. Note that the name of the spatial
column (shape in this case) is included in the feature class (-l) option.

shp2sde -o init -l roads,shape -f rdshp -u beetle -p bug

Similarly, you can also use the cov2sde command:

cov2sde -o init -l roads,shape -f rdcov -u beetle -p bug

Switching the table to normal_io mode

After data has been loaded into the feature class, you must switch the feature class to
normal_io mode to re-create all indexes and make the feature class available to clients.
For example:

sdelayer -o normal_io -l roads,shape -u beetle -p bug

Chapter 4—Managing tables, feature classes, and raster columns 85

Versioning your data

Optionally, you may enable your feature class as multiversioned. Versioning is a process
that allows multiple representations of your data to exist without requiring duplication or
copies of the data. For further information on versioning data, refer to the Building a
Geodatabase book.

In this example, the feature class “states” will be registered as multiversioned using the
sdetable alter_reg operation.

sdetable -o alter_reg -t states -c ver_id -C SDE -V multi -k GEOMETRY_TYPE

Granting privileges on the data

Once you have the data loaded, it is often necessary for other users to have access to the
data for update, query, insert, or delete operations. Initially, only the user who has created
the business table has access to it. In order to make the data available to others, the owner
of the data must grant privileges to other users. The owner can use the sdelayer command
to grant privileges. Privileges can be granted to either another user or to a role.

In this example, a user “beetle” grants SELECT privileges on a feature class “states” to a
user “spider”.

sdelayer -o grant -l states,feature -U spider -A SELECT -u beetle -p bug

The full list of -A keywords are:

SELECT. The user may query the selected object(s) data.

DELETE. The user may delete the selected object(s) data.

UPDATE. The user may modify the selected object(s) data.

INSERT. The user may add new data to the selected object(s) data.

If you include the -I grant option, you also grant the recipient the privilege of granting
other users and roles the initial privilege.

Creating and loading feature classes from existing data

The method for creating a schema from scratch and loading it has been reviewed. This
next section reviews how to create feature classes from existing data. This method is
simpler since the creation and load processes are completed at once.

Each of the ArcSDE administration commands, shp2sde, cov2sde, and sdeimport,
includes a “-o create” operation, which allows you to create a new feature class within the
ArcSDE database. The create operation does all of the following:

• Creates the business table using the input data as the template for the schema

• Adds the feature class to the ArcSDE system tables

• Puts the feature class into load-only mode

86 ArcSDE Configuration and Tuning Guide for Oracle

• Inserts data into the feature class

• When all the records are inserted, puts the feature class into normal_io mode

shp2sde

shp2sde converts shapefiles into ArcSDE feature classes. The spatial column definition is
read directly from the shapefile. You can use the shpinfo command to display the
shapefile column definitions. As part of the create operation, you can specify which
spatial storage format you want to adopt for the data storage by including a –k option that
references a configuration keyword containing a GEOMETRY_STORAGE parameter.

In this example, Oracle Spatial geometry type is chosen as the storage format by
including the configuration keyword SDO_GEOMETRY. The keyword
SDO_GEOMETRY, defined in the DBTUNE table, also sets a number of additional
parameters for this storage type, which will be used to create the Oracle Spatial index.
See Appendix D, ‘Oracle Spatial geometry type’, for additional information on Oracle
Spatial and specifics about how it can be configured.

shp2sde -o create -f rdshp -l roads,shape -k SDO_GEOMETRY -u beetle -p bug

cov2sde

The cov2sde command converts ArcInfo coverages, ArcInfo Librarian™ library feature
classes, and ArcStorm library feature classes into ArcSDE feature classes. The create
operation derives the spatial column definition from the coverage’s feature attribute table.
Use the ArcInfo Workstation “describe” command to display the ArcInfo data source
column definitions.

In this example, an ArcStorm library, “roadlib”, is converted into the feature class,
“roads”.

cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100
-e l+ -u beetle -p bug

sdeimport

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In
this example, the roadexp ArcSDE export file is converted into the feature class “roads”.

sdeimport -o create -l roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable
multiversioning on the feature class and grant privileges on the feature class to other
users.

Appending data to an existing feature class
A common requirement for data management is to be able to append data to existing
feature classes. The data loading commands described thus far have a –o append
operation for appending data. A feature class must exist prior to using the append
operation. If the feature class is multiversioned, it must be in an “open” state. It is also

Chapter 4—Managing tables, feature classes, and raster columns 87

advisable to change the feature class to load-only I/O mode and pause the spatial
indexing operations before loading the data to improve the data-loading performance.
The spatial indexes will be re-created when the feature class is put back into normal I/O
mode. Because the feature class has been defined, the metadata exists and is not altered
by the append operation.

In the shp2sde example below, a previously created “roads” feature class appends
features from a shapefile, “rdshp2”. All existing features, loaded from the “rdshp”
shapefile, remain intact, and ArcSDE updates the feature class with the new features from
the rdshp2 shapefile.

sdelayer -o load_only_io -l roads,shape -u beetle -p bug
shp2sde -o append -f rdshp2 -l roads,shape -u beetle -p bug
sdelayer -o normal_io -l roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The sdetable update_dbms_stats operation
updates the table and index statistics required by the Oracle cost-based optimizer.
Without the statistics, the optimizer may not be able to select the best execution plan
when you query the table. For more information on updating statistics, see Chapter 2,
‘Essential Oracle configuring and tuning’.

Creating and populating raster columns
Raster columns are created from ArcGIS Desktop using ArcCatalog or ArcMap. To
create a raster column, you will first need to convert the image file into a format
acceptable to ArcSDE. Then, after the image has been converted to the ESRI raster file
format, you can convert it into a raster column.

For more information on creating raster columns using either ArcCatalog or ArcToolbox,
refer to Building a Geodatabase.

To estimate the size of your raster data, refer to Appendix A, ‘Estimating the size of your
tables and indexes’.

To understand how ArcSDE stores rasters in Oracle, refer to Appendix B, ‘Storing raster
data’.

Creating views
There are times when a DBMS view is required in your database schema. ArcSDE
provides the sdetable create_view operation to accommodate this need. The view creation
is much like any other Oracle view creation. If you want to create a view using a layer
and you want the resulting view to appear as a feature class to client applications, include
the feature class’s spatial column in the view definition. As with the other ArcSDE
commands, see ArcSDE Developer Help for more information.

88 ArcSDE Configuration and Tuning Guide for Oracle

Exporting data
As with importing data, there are also client applications that export data from ArcSDE.
With ArcSDE, the following command line tools exist:

sdeexport—creates an ArcSDE export file to easily move feature class data between
Oracle instances and to other supported DBMSs

sde2shp—creates an ESRI shapefile from an ArcSDE feature class

sde2cov—creates a coverage from an ArcSDE feature class

sde2tbl—creates a dBASE or INFO file from a DBMS table

Schema modification
There will be occasions when it is necessary to modify the schema of some tables. You
may need to add or remove columns from a table. The ArcSDE command to do this is
sdetable with the –o alter option. ArcCatalog offers an easy-to-use tool for this and other
schema operations such as modifying the spatial index (grids) and adding and dropping
column indexes.

Choosing an ArcSDE log file configuration
ArcSDE allows you to configure the allocation of ArcSDE log files to your users. You
can allow your users to own their own log files, or they can check out a log file from a
pool of log files owned by the SDE user. Log files can be shared, session-based, or
standalone. A shared log file is the default and is used by all sessions that connect as a
given user. Also, if the ArcSDE server is configured to use standalone log files and all
available log files of this type are exhausted, ArcSDE will attempt to create a session-
based log file if allowed; otherwise a shared log file will be created. If the shared log file
cannot be created, ArcSDE returns an error.

Shared ArcSDE log files
Shared log files are shared by all sessions that connect as the same user. Essentially, all
sessions are inserting and deleting records from the same log file data table. The log files
are created the first time any session connects and remains in the user’s schema. To
configure your server to use only shared log files, set the log file server configuration
parameters as follows:

MAXSTANDALONELOGS 0
ALLOWSESSIONLOGFILE FALSE

Session-based ArcSDE log files
For session-based log files, each session that connects to the server creates a log file.

Chapter 4—Managing tables, feature classes, and raster columns 89

A session-based log file is dropped when a session disconnects. To configure your server
to use session-based log files, set the server configuration parameter
ALLOWSESSIONLOGFILE to true.

ALLOWSESSIONLOGFILE TRUE

You need to make sure that you configure enough space for the tables and indexes of the
session-based log files. The DBTUNE SESSION_STORAGE and SESSION_INDEX
storage parameters control the storage of session-based log files.

Standalone ArcSDE log files
Standalone log files are created by a session for each log file the application needs to
store. When an application deletes the log file, the standalone log file is truncated. The
standalone log files are dropped when the session disconnects. To configure your server
to use standalone log files, set the server configuration parameter
MAXSTANDALONELOGS to the number of standalone log files you want them to be
able to create.

For instance, set MAXSTANDALONELOGS to 6 if you want to allow each ArcSDE
session to create a maximum of six standalone log files:

MAXSTANDALONELOGS 6

Keep in mind that you need to configure enough space to store all of these log files. The
DBTUNE parameters, SESSION_STORAGE and SESSION_INDEX, allocate space for
the tables and indexes of standalone log files.

If the application exhausts the number of allowable standalone log files—if the
application needs to simultaneously create more logical log files than
MAXSTANDALONELOGS allows—ArcSDE will attempt to create a session-based log
file, but only if ALLOWSESSIONLOGFILE is set to TRUE; otherwise ArcSDE will use
a shared log file. The shared log file is created if it does not already exist. If the shared log
file cannot be created, ArcSDE returns an error.

Using an SDE user pool of ArcSDE log files
The SDE user can create a pool of log files that can be checked out and used as either
session-based or standalone log files by other users. Using a pool of SDE log files avoids
having to grant users CREATE TABLE privileges. Shared log files cannot be checked
out from an SDE log file pool.

To create a pool of log files, set the configuration parameter LOGPOOLSIZE to the
number of log files that need to be created. This number should reflect the number of
sessions that will connect to your server in addition to the standalone log files, if allowed.
To calculate the total number of log files that can be checked out of the pool, use the
following formulas:

If session log files are allowed but not standalone log files:

LOGPOOLSIZE = total sessions expected

90 ArcSDE Configuration and Tuning Guide for Oracle

If standalone log files are allowed, but not session log files:

LOGPOOLSIZE = MAXSTANDALONELOGS * total sessions expected

If both standalone log files and session log files are allowed:

LOGPOOLSIZE = (MAXSTANDALONELOGS + 1) * total sessions expected

For instance, if you compute that 100 log files are needed, the LOGPOOLSIZE
parameter would be set as follows:

LOGPOOLSIZE 100

If the pool is exhausted and another log file is needed, ArcSDE will attempt to create it in
the user’s schema. If the log file cannot be created, an error is returned.

The pooled log file tables are created or dropped whenever the LOGFILESIZE parameter
is changed.

Set the HOLDLOGPOOLTABLES server configuration parameter to TRUE if you want
the sessions to retain checked-out log files. If set to FALSE, the log files are released
whenever the application deletes all of its log files, as in the case of a session log file, or
whenever the log file occupying a standalone log file is deleted.

The storage of the tables and indexes of the log file pool is controlled by the DBTUNE
storage parameters SESSION_STORAGE and SESSION_INDEX.

Using the ArcGIS Desktop applications
So far the discussion has focused on ArcSDE command line tools that create feature class
schemas and load data into them. While robust, these commands can be daunting for the
first-time user. In addition, if you are using ArcGIS Desktop, you may have to use
ArcCatalog to create feature datasets and feature classes within those feature datasets to
use specific ArcGIS Desktop functionality. For that reason, a glimpse of how to use
ArcCatalog and other ArcGIS tools to load data is provided. Refer to the ArcGIS
Desktop documentation for a full discussion of these tools.

Loading data
You can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm
layers into geodatabase feature classes with the ArcToolbox and ArcCatalog applications.
ArcToolbox provides a number of tools that enable you to convert data from one format
to another.

ArcToolbox operations, such as the ArcSDE administration commands shp2sde,
cov2sde, and sdeimport, accept configuration keywords. By using a configuration
keyword with the GEOMETRY_STORAGE parameter, the user can choose one of the
three Oracle spatial storage methods supported by ArcSDE.

In the ArcToolbox Shapefile to Geodatabase wizard, you can see that a configuration
keyword has been specified for the loading of the hampton_streets shapefile into the
geodatabase. Since the geodatabase is maintained by an ArcSDE service operating on an

Chapter 4—Managing tables, feature classes, and raster columns 91

Oracle database, you can store the resulting feature class using the Oracle Spatial
geometry type format. This keyword has set the GEOMETRY_STORAGE parameter to
SDO_GEOMETRY, indicating to ArcSDE that the resulting feature class should be
stored as an Oracle Spatial geometry type.

The shapefile CASNBRST.shp is converted to feature class vtest.CASNBRST using Toolbox.

92 ArcSDE Configuration and Tuning Guide for Oracle

Versioning your data
ArcCatalog also provides a means for registering data as multiversioned. Simply right-
click the feature class to be registered as multiversioned and click the Register As
Versioned context menu item.

A feature class is registered as multiversioned from within ArcCatalog.

Chapter 4—Managing tables, feature classes, and raster columns 93

Granting privileges
Using ArcCatalog, right-click the data object class and click the Privileges context menu.
From the Privileges context menu, assign privileges specifying the username and the
privilege you want to grant to or revoke from a particular user.

The ArcCatalog Privileges dialog box allows the owner of an object class, such as a feature dataset,
feature class, or table, to assign privileges to other users or roles.

94 ArcSDE Configuration and Tuning Guide for Oracle

Creating a raster column with ArcCatalog
Using ArcCatalog, right-click the database connection, point to Import, and click Raster
to Geodatabase. Navigate to the raster file to import. Click Change Settings if you want
to change the coordinate reference system, tile size, pyramids option, or configuration
keyword. Click OK to import the raster file into the Oracle database.

Efficiently registering large business tables with ArcSDE
When you create a business table in an ArcSDE database using an ArcSDE client
application, for example, ArcCatalog or sdetable, ArcSDE registers the business table in
the SDE.TABLE_REGISTRY. During the registration process, ArcSDE performs a
number of tasks depending on the type of registration requested. The duration of the
registration process is dependent on the type of registration, whether the business table
has a spatial column, and the table’s number of rows. For large business tables, the
registration process can take a long time to complete. This section provides the most
efficient method to register tables with a large number of records.

Registering a table as NONE or USER maintained
Tables registered as NONE are registered without a row ID column.

Chapter 4—Managing tables, feature classes, and raster columns 95

Tables registered as USER are registered with a row ID column whose values you must
maintain.

If the registration type is NONE or USER, ArcSDE merely adds a record to the
SDE.TABLE_REGISTRY that references the business table. For tables registered as
type USER the name of the row ID is also added to the SDE.TABLE_REGISTRY entry.
In the case of user maintained row IDs, ArcSDE will ensure that the column exists in the
business table before completing the registration.

The preceding two registration types complete the registration process rather quickly.

Registering a table with an SDE maintained row ID
Tables registered with an SDE maintained row ID must have a row ID column that
uniquely identifies the rows of the table.

Note: Tables registered by the geodatabase must be registered by ArcSDE with an SDE
maintained row ID. If the geodatabase determines that the table has been registered with
an SDE maintained row ID, the geodatabase registration process is relatively
inexpensive.

If a table was registered with a USER maintained row ID, the geodatabase alters its row
ID registration to be SDE maintained.

By default, the geodatabase adds a column called objectid to the table and registers it as
an SDE maintained row ID. If the objectid column already exists and is not currently
registered as SDE maintained, the geodatabase will add a new column to the table called
objectid_1.

Creating a new SDE maintained row ID column

If the row ID column does not exist when the table is registered, ArcSDE adds a column
of type INTEGER, with a NOT NULL constraint. If the table contains rows, ArcSDE
populates the column with unique ascending values starting at your specified minimum
ID value. The minimum ID value defaults to 1 if left unspecified. It then creates a unique
index on the column R<registration_id>_SDE_ROWID_UK, where registration_id is the
registration identifier ArcSDE assigns the table when it was registered.

ArcSDE creates a sequence generator called R<registration_id> and uses it to generate
the next value of the row ID column whenever a value is added to the column.

Adding a column to an Oracle table that already contains rows can result in row
migration, when the free space of the Oracle data block (as defined by PCTFREE) is
consumed by the newly added column values.

Therefore, if at all possible, it is better to include the row ID column as part of the table’s
original definition, or add it before data is inserted into the table. If, however, you must
add the row ID column to a table that contains data, consider exporting the table
afterwards, truncating the rows, and importing the data back into the table. Doing so
eliminates the excessive disk I/O generated by fetching the migrated rows.

96 ArcSDE Configuration and Tuning Guide for Oracle

Using an existing column

If the row ID column already exists, ArcSDE confirms that the column was defined as an
integer. If it does not, the registration fails.

Next, ArcSDE confirms that the column has a unique index. If the column was defined
with a nonunique index, ArcSDE drops the index.

In the event that the column does not have a unique index, ArcSDE attempts to create a
unique index on the column. If the index creation fails because the column contains non-
unique values, ArcSDE repopulates the column with ascending values, beginning at 1,
and creates the unique index. ArcSDE names the unique index
R<registration_id>_SDE_ROWID_UK.

Next, ArcSDE verifies that the column has been defined as NOT NULL.

If the column was defined as NULL, ArcSDE attempts to redefine it as NOT NULL. If
this action fails, ArcSDE repopulates the column and defines it as NOT NULL.

Repopulating the column either because it contained null values or because it contained
nonunique values is an expensive process, especially if the table contains more than
100,000 records.

Therefore, don’t rely on ArcSDE to perform this operation. Instead, define the row ID
column as not null when the table is created and create your own unique index on it. At
the very least, you should ensure that the column is populated with unique integer values.

Registering a table as multiversioned
To perform versioned edits on a business table, the table must be registered as
multiversioned. These tables, as the name implies, store the records of the business that
are added and deleted. They are named A<registration_id> and D<registration_id>.
When tables are registered as multiversioned, the associated adds and deletes tables are
created, and along with the business table, ArcSDE updates their DBMS statistics.

For the business table, ArcSDE queries the LAST_ANALYZED value from the
USER_TABLES view to determine if it has DBMS statistics. If the value is NULL,
ArcSDE generates statistics for the table with COMPUTE STATISTICS.

Note: This is an expensive operation for tables with more than a million rows. Therefore,
to speed up the registration process, you should analyze large tables before you register
them as multiversioned. For tables containing approximately 100,000 rows or more,
sampling from 1 to 10 percent of the rows should be adequate. The larger the table, the
smaller the sampling percentage can safely be.

If the business table contains a spatial column that is stored as binary (see Appendix C for
more information), the feature table and spatial index table must also have statistics.
ArcSDE also queries the LAST_ANALYZED value of the USER_TABLES view for
these tables.

If the value is not null, these tables and their indexes are analyzed.

Chapter 4—Managing tables, feature classes, and raster columns 97

Again, if they are very large (more than 100,000 rows), you should analyze them yourself
using a percentage of the total number of records.

Use the Oracle ANALYZE statement to analyze the tables.

ANALYZE TABLE <table_name>
ESTIMATE STATISTICS SAMPLE <percent_value> PERCENT;

Under cost-based optimization, Oracle uses the statistics of the tables it is querying to
select the optimal execution plan.

Note: The registration of an SDE maintained row ID column is the only time ArcSDE
automatically updates the statistics of the business, adds and deletes tables and their
indexes as well as the feature table and the spatial index table, if they exist.

98 ArcSDE Configuration and Tuning Guide for Oracle

C H A P T E R 5

National language support

Storing and retrieving data in an ArcSDE Oracle database using character

sets other than the Oracle default requires some extra configuration on

both the client and the server. This section provides guidelines for

configuring both the Oracle database and the ArcSDE client

environment, to enable the use of character sets other than the default.

Oracle database character sets
If you are using UNIX, by default an Oracle database is created with a US7ASCII
character set. On Windows, the default character set is WE8ISO8859P1. The character
set is selected when the database is created with the CREATE DATABASE statement
and cannot be changed afterward. To change a character set, the database must be re-
created and the data reloaded. Consult the Oracle National Language Support Guide for
your Oracle release to determine the character set that is right for your data. References
to character sets in Oracle documentation are synonymous with the ArcSDE term
character encoding.

Setting the NLS_LANG variable on the client
Once the ArcSDE Oracle database has been created with the desired character encoding,
data can be loaded into it using a variety of applications such as ArcGIS Desktop and the
ArcSDE administration tools shp2sde and cov2sde as well as applications written with
the ArcSDE C and Java API. To properly convert and preserve the characters, you must
set the Oracle NLS_LANG variable in the client application’s system environment.

For instance, if the Oracle database, installed on Windows, has been created with the
Shift Japanese industrial standard (JIS), Oracle notation ja16sjis, character encoding and
you want to access this database from a UNIX client running in the Extended UNIX
character Japanese (EUC JP), Oracle notation ja16euc, character encoding, you will

100 ArcSDE Configuration and Tuning Guide for Oracle

have to set the NLS_LANG variable to ja16euc. This ensures that all character data
transferred between the ArcSDE server and the ArcSDE client uses the ja16euc
character encoding.

For C API client applications, set the NLS_LANG as an environment variable.

setenv NLS_LANG Japanese_Japan.ja16euc

For Java API client applications, set the NLS_LANG as a Java Virtual Machine (JVM)
system property.

java -DNLS_LANG= Japanese_Japan.ja16euc [Java program name]

If the situation is reversed, and the Oracle database is on UNIX and created with the
EUC JP character encoding but the client is running on Windows, you will have to set
the NLS_LANG environment variable on the Windows client to ja16sjis.

For the Windows clients, such as ArcCatalog or ArcMap, open the Control Panel.
Double-click the System icon. For Windows 2000 and lower, select the Environment
tab. Click the System Variables scrolling list and enter NLS_LANG in the Variable:
input line and Japanese_Japan.ja16sjis in the Value: input line. Click Set, then OK. For
Windows XP and higher, select the Advanced tab and click on the Environment
Variables button. Under the System Variables list, click New. Enter NLS_LANG in the
Variable: input line and Japanese_Japan.ja16sjis in the Value: input line and click OK.

For C API and ArcSDE client utility applications, such as shp2sde, that run from the
DOS environment, set the NLS_LANG as an environment variable.

set NLS_LANG=Japanese_Japan.ja16sjis

For Java API client applications, set the NLS_LANG as a JVM system property.

java -DNLS_LANG= Japanese_Japan.ja16sjis [Java client program]

Setting the NLS_LANG variable for Windows clients

Be careful setting the NLS_LANG on Windows because there are actually two different
code page environments on this platform. The character encoding standards supported
by the Windows environment are different from those supported by the MS–DOS
environment. Windows applications, such as ArcGIS Desktop, run in the Windows
American National Standards Institute (ANSI) code page environment, while ArcSDE
administration tools and C and Java API applications invoked from the MS–DOS
Command Prompt run in the original equipment manufacturer (OEM) code page
environment. Some languages require two different NLS_LANG settings for the
language character set component for each of these code page environments.

Chapter 5—National language support 101

Setting the NLS_LANG variable for a remote ArcSDE setup

If you use direct connect to connect to an Oracle server from a remote computer or if
you start the ArcSDE application server on a computer that is remote from the Oracle
server, you will need to set the NLS_LANG variable for ArcSDE.

In the case of the direct connect client, that NLS_LANG variable must be set in the
environment. If you are using an ArcSDE administration tool, such as shp2sde, that is
started from an MS–DOS command tool, set the NLS_LANG variable in the MS–DOS
environment before executing the command.

Direct connections from a Windows application, such as ArcMap, require that the
NLS_LANG variable be set in the Windows environment. Open the Control Panel and
double-click the System icon. For Windows 2000 and lower, select the Environment tab.
Click the System Variables scrolling list and enter NLS_LANG in the Variable: input
line and Japanese_Japan.ja16sjis in the Value: input line. Click Set, then OK. For
Windows XP and higher, select the Advanced tab and click on the Environment
Variables button. Under the System Variables list, click New. Enter NLS_LANG in the
Variable: input line and Japanese_Japan.ja16sjis in the Value: input line and click OK.

To set the NLS_LANG for a remote application server, set the variable in the dbinit.sde
file. When the application server is started, the variable is read from the file. To ensure
that the variable is set in the ArcSDE application server environment, check the ArcSDE
application server’s variable settings with the ArcSDE sdemon –o info –I vars
command.

The following ArcSDE/Oracle configuration illustrates how the NLS_LANG variable
should be set in a remote setup. Consider the case where the language environment is
Eastern European, Oracle is installed on a UNIX server, the ArcSDE application server
is running on a Windows server, and a user is connecting from Windows on yet another
computer. The Oracle database was created with the iso.8859-2 UNIX ISO code page.
Before the administrator starts the ArcSDE application server, the following Windows
ANSI cp1250 code page NLS_LANG variable must be added to the dbinit.sde file:

set NLS_LANG=SLOVAK_SLOVAKIA.EE8ISO8859P2

The user connects to the application server with ArcMap, but before doing so sets the
NLS_LANG variable to the Windows ANSI cp1250 code page value as:

NLS_LANG=SLOVAK_SLOVAKIA.EE8ISO8859P2

The user wishes to use SQL*Plus from an MS–DOS prompt to query a table. In the
command window the user enters the following DOS OEM 852 NLS_LANG variable:

set NLS_LANG=SLOVAK_SLOVAKIA.EE8PC852

102 ArcSDE Configuration and Tuning Guide for Oracle

Setting the NLS_LANG variable for Java clients

ArcSDE—Java API client-based applications, run from the DOS command window,
require setting the file.encoding Java System property if the DOS OEM file.encoding
property is different from the file.encoding used by applications run in the Windows
environment. Consider, for example, that the Windows client machine is set up in the
French Locale (CP1252) and that the Oracle database contains French data, created with
the NLS_CHARACTERSET parameter set to WE8MSWIN1252. The OEM codepage
required to read this data is CP850. To read and display all French data, the file.encoding
Java System Property must be set at the DOS command prompt as shown below:

java -Dfile.encoding=CP850 -DNLS_LANG=French_France.we8pc850 <Java program
name>

Setting the NLS_LANG for the ArcSDE server
For Windows, the NLS_LANG variable setting must be registered before the ArcSDE
server is started.

sdeservice -o register -r NLS_LANG -v <value> -p <DB_Admin_password> [-i
<service>]

On UNIX, the NLS_LANG variable must be set as an environment variable before the
ArcSDE server is started, preferably in the dbinit.sde file.

Character encoding standards supported by ArcSDE

For a complete list of character encoding standards supported by your Oracle database
and their naming conventions, please refer to the Oracle National Language Support
Guide.

C H A P T E R 6

Backup and recovery

Data protection is ensured by implementing, testing, and verifying an

appropriate database backup and recovery procedure. Oracle provides a

number of choices for backing up a database including exporting data,

selective backup of tablespaces, or copying database files.

This chapter presents a summary of the Oracle concepts that are essential

for understanding backup and recovery, plus specific guidelines that may

be applied to your ArcSDE installation.

For details, refer to the Oracle Backup and Recovery Guide for your

Oracle release.

Recording database changes
Oracle manages changes to its contents and structure in such a manner as to guarantee
recovery of the database to the last committed transaction after any single point of
failure. This guarantee is at the heart of Oracle’s architecture, and this statement says a
great deal.

To the last committed transaction means that once control is returned to the user after
executing a COMMIT statement, Oracle guarantees that the committed data has been
written to disk in some form and is recoverable.

Single point of failure means that any single file or process can fail without losing the
contents of any committed transaction. If a data file is lost or corrupted, the contents of
the redo logs guarantee that the data is recoverable. If a control file breaks, the other
control files ensure that the information remains safe. A process may be killed, but
committed data is never lost.

104 ArcSDE Configuration and Tuning Guide for Oracle

Such a guarantee requires a high level of coordination between database processes and
database files. Files “know about” each other and may not be deleted or changed without
properly coordinating through the Oracle instance.

This section briefly describes the role of the various Oracle database files in backup and
recovery to achieve this guarantee.

Control files

The physical structure of the database—the arrangement of physical files on disk—is
recorded in the control file. The control file is so important for the purpose of database
consistency that Oracle maintains multiple identical copies of it.

If the database loses one of its control files, the database will halt. You will have to do a
SHUTDOWN ABORT on the database instance prior to recovering the database.

Oracle recommends that any database instance should use at least three identical control
files and further recommends that each control file be placed on a physically separate
disk drive under a separate disk controller. While a single hardware failure may cause
the loss of one control file, this strategy ensures the safety of the remaining control files.

The locations and names of the control files are controlled by the init.ora parameter:

CONTROL_FILES

Note: If you add or drop a data file or an online redo log file or alter file locations, the
contents of the control file change as this information is recorded. Since the backup
version of the control file no longer matches the current database structure, you should
take an immediate backup of the new control file.

Redo log files

Every change that is made to an Oracle database—such as creating or altering schema
objects or inserting or manipulating data—is recorded in the online redo log file. This
happens automatically in addition to the normal action of writing the changes to the
appropriate data file or control file.

Changes to the database are recorded in the order that they occur. If, for example, you
create a table to store GIS data, then insert some data into that table, the create table
action will be recorded first, and the insert data action will be recorded second.

Chapter 6—Backup and recovery 105

Recording the order of the actions is important, and individual steps may not be
neglected. In this example, if the table creation step is skipped or performed at the wrong
time, the data insertion step will fail.

Eventually, the database change information recorded in a redo log file accumulates to
some preset maximum. Oracle then performs a log switch, closing the current online
redo log file and opening the next one.

Oracle uses the online redo log files in a circular fashion, reusing the first log file after it
closes the last log file. If three online log files are specified, for example, Oracle will use
the log files in order: 1, 2, 3, 1, 2, 3, 1, … This means that earlier information stored in
any of the online redo log files will be lost when the file is used again.

Archiving redo log files

Oracle provides for the online redo log files to be copied to an offline location
immediately after a log switch. This is called archiving the redo log files.

When an Oracle database is run in ARCHIVELOG mode, redo log information is
accumulated indefinitely by copying the online redo log file to an offline location with a
unique name based on the current log sequence number.

For example, as Oracle switches through online redo log files in order (1, 2, 3, 1, 2,…)
the following archived redo log files (reflecting log sequence numbers 15, 16, 17, 18, 19,
…) might be created:

LOG0015.ARC
LOG0016.ARC
LOG0017.ARC
LOG0018.ARC
LOG0019.ARC

In ARCHIVELOG mode, the total amount of redo log information is limited only by the
total file space available at the archive destination. When an Oracle database is run in
NOARCHIVELOG mode, the online redo log files are not copied so the amount of
usable redo log information is limited to the contents of the current online redo log files.

Which archive mode should you use?

Often databases are created and initially loaded under the NOARCHIVELOG mode
because, should a media failure occur, the same effort is required to restore the database
regardless of whether the database was reloaded using the archived redo log files or the
original source data. In addition, a huge amount of log file data is created, and
maintaining this data is unnecessary since the original source data is readily available.

106 ArcSDE Configuration and Tuning Guide for Oracle

After the initial data load is complete and the database goes into production, the changes
become difficult to re-create. Switch to ARCHIVELOG mode to ensure that point-in-
time recovery of the database is available in the event of a media failure.

Operate the database in NOARCHIVELOG mode and make frequent backups only if
you understand the risk of data loss and can afford to reenter the changes made since the
last backup.

Note: Because of the risk of losing committed transactions in the event of media failure,
ESRI does not recommend using NOARCHIVELOG mode for normal operation of an
ArcSDE database.

Switching from NOARCHIVELOG to ARCHIVELOG

An Oracle database created in NOARCHIVELOG mode can be switched to
ARCHIVELOG mode. To make this change, shut down the database using the
NORMAL, IMMEDIATE, or TRANSACTIONAL priority. (Do not use ABORT.)

SQL> connect sys/<password> as sysdba
Connected.
SQL> shutdown normal
Database closed.
Database dismounted.
Oracle instance shut down.

Before switching to ARCHIVELOG mode, Oracle recommends that you make a full
backup of the database.

To the init.ora file, add the LOG_ARCHIVE_START and LOG_ARCHIVE_DEST
parameters.

LOG_ARCHIVE_START = TRUE
LOG_ARCHIVE_DEST = <pathname_to_archives>/arch%t_%s.dbf

Setting LOG_ARCHIVE_START to true causes the ARCH process to archive the
online redo log files automatically. If you do not set this parameter or set it to false, you
will have to manually archive the log files. For information on how to perform a manual
archive, consult the Oracle Server Administrator’s Guide for your Oracle release.

After you have backed up the Oracle database, switch the database to ARCHIVELOG
mode:

C:\>sqlplus

SQL*Plus: Release 9.2.0.3.0 - Production on Thu Jul 10 18:55:38 2003

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Enter user-name: sys/manager as sysdba

Chapter 6—Backup and recovery 107

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.3.0 - Production
With the OLAP and Oracle Data Mining options
JServer Release 9.2.0.3.0 - Production

SQL> startup mount
Total System Global Area 245317008 bytes
Fixed Size 64912 bytes
Variable Size 103677952 bytes
Database Buffers 131072000 bytes
Redo Buffers 10502144 bytes
Database mounted.
SQL> alter database archivelog;
Statement Processes
SQL> alter database open;
Statement processed.
SQL>

Note: After the database successfully reopens in ARCHIVELOG mode, you should shut
it down again and make another full backup. If you don’t, your last full backup will have
recorded that the database was in NOARCHIVELOG mode, and you will not be able to
apply the online redo log files following the restoration of the backup.

Sizing the redo log files

If you have created small online redo log files, you should consider creating new, larger
redo log files.

Every time that Oracle switches the log file, it first performs a checkpoint in which the
contents of changed blocks within the database buffer cache are written to disk. Changes
to the database are always suspended while checkpoint processing is taking place.

In a large multiuser system where many changes are being made, the checkpoint process
may involve practically the entire database buffer cache and should, therefore, be put off
for as long as possible. Where the number of database changes is small, checkpoint
processing will be insignificant.

If the database is configured with only three large online redo log files without
mirroring—the default configuration—you should create more log file groups and
mirror them before you switch the database to ARCHIVELOG mode.

Additional log file groups help smooth out the archiving process by enabling the archive
process to finish copying a log file to the archive destination before the database needs to
make the log file current again. If the database must make a log file current before the
archive process has finished copying it, the database will wait until the archive is
finished before continuing processing.

108 ArcSDE Configuration and Tuning Guide for Oracle

Refer to Chapter 2, ‘Essential Oracle configuring and tuning’ for guidance on
configuring the online redo logs.

For details on commands used to manage redo log files, refer to the Administrator’s
Guide for your Oracle release.

Database backup
To back up your ArcSDE Oracle database, you must copy these files to an offline
location:

• Control files

• Datafiles

• giomgr.defs, dbinit.sde, and services.sde files

• Archived redo log files

You should make at least three copies of the control files with each backup because of
their importance in ensuring database consistency. Because control files are
comparatively small, there is negligible cost in doing so.

Remember that the redo log files are essential for bringing the data files from an earlier
state to a later state. Between any two points in time, the redo logs must be found in an
unbroken sequence if database recovery is to succeed.

ESRI recommends that you maintain at least two copies of all archived redo logs for as
far back in time as may be reasonably necessary for database recovery. The two copies
should be stored on physically distinct media—separate disk drives, for example, or a
disk drive and a tape drive.

If you intend to purge the archived redo log files from their location on disk, be sure that
you have a second backup copy of each archived redo log file before purging.

This strategy of multiple backups of the archived redo log files helps guard against
multiple media failure, which is not as rare as it might seem. Some tape drives, for
example, fail to detect bit errors until you attempt to restore a file, when it may be too
late.

You only need to make a single copy of each data file with each backup as long as you
carefully maintain multiple copies of archived redo logs.

Chapter 6—Backup and recovery 109

Note: The online redo log files are not necessary for backup. If the current online redo
log file fails, committed information still exists in memory, which Oracle writes to the
data files when a checkpoint is issued. Oracle issues a checkpoint automatically when
you shut down a database instance with NORMAL, IMMEDIATE, or
TRANSACTIONAL priority. Before shutting down a database with ABORT priority,
you should force a checkpoint with the ALTER SYSTEM … CHECKPOINT command
if at all possible.

Hot backup

Backing up an Oracle database while the database instance is running is called a hot
backup. If you plan to take a hot backup, you must operate your database in
ARCHIVELOG mode.

Enter the ALTER TABLESPACE … BEGIN BACKUP command prior to the backup
of each tablespace, which tells Oracle that a hot backup is being taken. If this command
is not issued, the hot backup will appear to succeed but it may be useless for restoring
the database. To finish the hot backup, for each tablespace enter the ALTER
TABLESPACE … END BACKUP command.

Changes to data are recorded and held in the rollback segment until they are no longer
needed by any outstanding transaction. Taking a hot backup prevents the release of
rollback segment data until the ALTER TABLESPACE … END BACKUP command is
issued.

Therefore, the rollback segment must be large enough to accommodate changes made
during the hot backup. If the rollback segment runs out of space, a transaction will fail
with an ORA-1555 error:

ORA-1555: snapshot too old (rollback segment too small)

While the hot backup will succeed despite this error, changes made to the database may
need to be reentered.

You may avoid this error by taking a hot backup during times of low database activity or
by ensuring that your rollback segments are large enough to accommodate data changes
made during backup.

You do not need to shut down the ArcSDE server process (giomgr) prior to making a
hot backup.

For details on hot backup, refer to the Oracle Backup and Recovery Guide for your
Oracle release.

110 ArcSDE Configuration and Tuning Guide for Oracle

Cold backup

Backing up an Oracle database while the database instance is shut down is called a cold
backup. Managing a cold backup is simpler than a hot backup and less prone to error.

If you run the database in NOARCHIVELOG mode, a cold backup is your only option.
Running the database in ARCHIVELOG mode will enable you to use a cold backup to
recover a database to the latest committed transaction.

Database export

You can use Oracle’s export utility to supplement a full backup. If changes are made to a
known set of data objects between full backups, you can export the objects.

However, the export utility should only be used on data objects that are not changing
during the export and on all data objects that are closely related. For example, if you use
export to back up a business table, you should also capture the related spatial index,
feature, and delta tables in the same backup.

ESRI does not recommend that you use the export utility as your only backup method.

You can also back up the entire Oracle database with the Oracle export utility, then
make cumulative and incremental backups.

For more information on the export utility, refer to the Oracle Utilities manual for your
Oracle release.

Frequency of backups

Base the frequency of your backups on the rate at which the data in your database is
changing. The more changes that occur, the more frequently backups should occur.

If your Oracle database is operating under ARCHIVELOG mode, you have several
variations that you may add to your backup strategy in addition to the periodic full
backup. Databases operating under the NOARCHIVELOG mode are restricted to full
backups with the possible addition of Oracle export files.

For more information on different Oracle database backup strategies, refer to the Oracle
Backup and Recovery Guide for your Oracle release.

Regardless of which archiving mode you are using, you should make regular full
backups of the Oracle database. A full backup should include the Oracle database and, if
you have started an ArcSDE service, the giomgr.defs, dbinit.sde, and services.sde files.

Chapter 6—Backup and recovery 111

Scripting the backup

Once you have decided on your backup strategy, the commands that are entered through
the system prompt or through SQL*Plus may often be scripted.

ESRI recommends using a script for backup purposes whenever possible.

Executing the backup commands from a UNIX shell script or a Windows batch file will
help ensure that the database is being backed up consistently and that all intended steps
are being followed.

Be sure to update the script whenever the physical structure of the database changes, for
instance, whenever you add a data file or move a redo log file.

For examples of backup scripts, refer to the Oracle Backup and Recovery Guide for your
Oracle release.

Database recovery
To recover a database after any failure, Oracle takes these steps:

1. Reads the init.ora file to determine the names and locations of the control files.

2. Reads the control files to verify their consistency with each other and to determine
the physical file structure of the database.

3. Opens each data file mentioned in the control file to determine whether that data file
is current and reflects the latest committed change or is in need of recovery.

4. Opens each redo log file in sequence and applies the information found there to
each data file, as necessary, to bring each data file to the state where it contains all
its committed transactions.

It is possible to recover a database by combining current data files with older data files
restored from backup, since Oracle selectively applies changes from the redo log files to
all files that are not current. However, this strategy succeeds only if an unbroken
sequence of redo log files is available to bring the older data files up to date.

Database failure and recovery modes

If the database has lost a control file, the database is recovered by replacing the lost
control file with a copy of a current control file.

112 ArcSDE Configuration and Tuning Guide for Oracle

If the database has lost one or more data files, the database is recovered by first replacing
the lost data file or data files with backup copies, then using the redo logs (online or
archived) to make the restored copies current. If the backup copies are restored to
different locations from the original files they are intended to replace, you must use the
ALTER DATABASE RENAME FILE command to tell the Oracle instance where the
restored files are to be found.

If the database has lost the current online redo log, the database instance will halt when it
attempts to commit more transactions. No data will have been lost, except that the latest
transaction will not be committed and may need to be reentered when the database
comes back up. However, the current online redo log file will have to be replaced and a
backup of the database should immediately be taken.

If the database has lost any archived redo logs, the database instance will continue to
function, as it will have no knowledge of the loss. However, the ability to recover the
database in the event of a second media failure or file loss may be compromised. A fresh
backup should be taken if the archived redo logs are lost.

For detailed information on the recovery of an Oracle database, refer to the Oracle
Backup and Recovery Guide for your Oracle release.

Note: ESRI strongly recommends that you test your backup procedure by building a
functioning database instance from backup files before an emergency arises. If you have
just loaded your database, you should make a full backup, then recover the database
from the backed up files to ensure the recovery process will work when you need it.

A P P E N D I X A

Estimating the size of your
tables and indexes

The formulas provided in this appendix provide approximations of the

actual sizes of the Oracle tables and indexes created by ArcSDE.

The business table
The following calculation of business table size is based on the calculations provided in
Oracle Administrator’s Guide for your Oracle release.

1. Determine the data block size. Do this by connecting to the database as the DBA
and querying the db_block_size parameter stored in the v$parameter file.

$ sqlplus system/<password>

SQL> select value from v$parameter where name = 'db_block_size';

2. Remove the header from the data block space.

space after headers(sph) = db_block_size - 86 - ((INITRANS -1) * 24)

3. Calculate the available space by removing the percent free from the space after
headers.

available space = ceil(sph * (1 - PCTFREE / 100)) - 4

4. Reduce the available space further by 5 percent.

available space = (available space * 0.95)

5. Calculate the row size. You may use the formulas described in Step 3 of
Appendix A in the Oracle Administrator’s Guide to calculate the row size.
However, if you can create the table and load approximately 100 sample records
into it, you can obtain the most accurate estimate of row size by analyzing the table,
then querying user_tables for the table’s avg_row_len.

$ sqlplus <username>/<password>

114 ArcSDE Configuration and Tuning Guide for Oracle

SQL> create table <table_name> . . .
SQL> insert into table <table_name> . . .
SQL> analyze table <table_name> compute statistics;
SQL> select avg_row_len from user_tables where table_name = <table_name>;

6. Compute the number of rows that can be stored by each data block.

rows per data block = floor(available space / row size)

7. Compute the number of data blocks required to store the table. You will need to
estimate the number of rows you expect the table to contain.

total data blocks = total rows / rows per data block

8. Compute tablespace required to store the table in bytes.

tablespace size = data block size * total data blocks

The feature table
Use the steps listed in the business table size calculation to calculate the size of the
feature table. If you cannot load a sample feature class, use the following formula to
calculate the row size:

row size = feature header + (average points per geometry) * 0.586 * coordinate factor

The feature header varies depending on the type of geometry the feature class stored and
whether z-values and/or measures are stored. The following table lists the feature header
sizes for the various combinations.

 x,y x,y,z x,y,m x,y,z,m

points 85 103 121 139

lines 93 111 129 147

polygons 101 119 137 155

Feature headers vary according to the geometry type of the feature class and whether z-values,
measures, or both are stored along with each x,y coordinate pair. The geometry type is listed by row,
while the coordinate type is listed by column.

Appendix A—Estimating the size of your tables and indexes 115

The coordinate factor varies depending on whether it will store z-values, measures, or
both. The following table lists the possible coordinate factors.

Coordinate
type

Coordinate factor

x,y 8

x,y,z 12

x,y,m 12

x,y,z,m 16

Coordinate factors vary depending on the type of coordinates stored.

If the features store annotation, the row size will be larger. Calculating the space
required to store annotation can be rather complex with the annotation text, leader line,
placement, and metadata. Most annotation will occupy between 100 and 300 bytes of
space per feature. Therefore, increase the row size by 200 bytes if your features include
annotation.

The spatial index table
You can use the steps listed in calculating the business table to calculate the size of the
spatial index table except for the row size. The row size for the spatial index table is
always 43 bytes.

However, the size of the spatial index table can be fairly accurately estimated given the
number of records in a feature class’s business table.

spatial index table size = number of business table records * 1.3

This formula assumes that the spatial index table contains an average of 1.3 grid cells for
each feature.

Use steps 6, 7, and 8, listed in the business table, to calculate the amount of space
required to store the spatial index table.

116 ArcSDE Configuration and Tuning Guide for Oracle

The version delta tables
When you register a business table as multiversioned, three tables are created to
maintain the deltas: the adds table, the deletes table, and the equivalency table.
Depending on how the versions are managed, these tables may remain relatively small,
or they may become quite large. The adds table receives one record for each record that
is added to a business table version. The deletes table receives a record each time a
record is deleted from a business table version.

The most difficult part of estimating space for the delta tables is trying to predict how
many rows they will contain. It will depend partly on how many versions the table is
involved in. In other words, the number of records added or deleted throughout the life
of a version will affect the size of the adds and deletes tables.

The size of the delta tables also depends on how often records are removed. These tables
shrink only when the states preceding the level 0 version are compressed. This occurs
only after a version branching directly off the root of the version tree completes and is
removed from the system. The compression of states that follows will cause the changes
of the states between the level 0 version and the next version following the one removed
to be written to the business table and deleted from the delta tables.

For most applications the delta tables should not be expected to grow beyond 10,000
records. However, there are applications where several versions of the database must be
maintained over a long period. In these cases, as many as 30,000 records per delta table
can be expected.

The adds table

The table definition of the adds table is identical to that of the business table with the
addition of the SDE_STATE_ID column. Therefore, to compute the space required to
store the adds table, use the calculations for the business table and increase the row size
of the adds table by four bytes to account for the addition of the SDE_STATES_ID
column.

The record count for the adds table will be an estimate of the number of records added to
the versioned business table after it has been registered as multiversioned. Records are
removed from the adds table only when a version next to the 0 version is removed and
its states are compressed.

Appendix A—Estimating the size of your tables and indexes 117

The deletes table

The record count depends on the number of records deleted from the business table after
it was registered as multiversioned. Records are removed from the deletes table only
when a version next to the 0 version is removed and its states are compressed.

Calculate the size of the deletes table with the following formula:

deletes table size = 5.4 * number of rows

For more information on versioning, refer to Building a Geodatabase.

The network tables
There are 10 standard network tables created whenever you create a geodatabase
network class. Optionally, the application designer may also create weights for the
network, in which case two tables are created for each weight.

The size of the network tables depends on the number of rows in the base tables. A
network class is basically the logical combination of point and linestring feature classes.
In network terms, linestring features are referred to as edges.

The first step in determining the size of the network tables is to establish the total
number of edges and junctions.

The total number of edges is calculated by adding up all the linestring features in the
network.

A junction must exist at the endpoint of each linestring. If a point feature does not exist
at the endpoint of a linestring, a logical junction is created within the network tables. For
endpoints of two or more linestrings that share the same coordinate position, only one
junction exists. So some of the endpoints will share the same coordinate position, and
some will not. Some will have a point feature at the endpoint, and some will not. As a
rough guide assume that half of your linestring endpoints share the same coordinate
position and that the total number of junctions required by the network is equal to the
number of edges.

Once you have the junction and edge totals, you can determine the size of the network
tables using the following formulas.

118 ArcSDE Configuration and Tuning Guide for Oracle

Description table (N_<n>_DESC)

The number of rows in the description table is equal to the sum of the junctions and
edges.

The size of the description table is calculated as

size in bytes = number of rows * 7.4

Edge description table (N_<n>_EDESC)

The number of rows in the edge description table is calculated as

number of rows = number of edges /1,638

The size of the edge description table is calculated as

size in bytes = number of rows * 6,250

Edge status table (N_<n>_ESTATUS)

The number of rows in the edge status table is calculated as the

number of rows = number of edges/65,536

size in bytes = number of rows * 10,000

Edge topology table (N_<n>_ETOPO)

The number of rows in the edge topology table is calculated as the

number of rows = number of edges/4,096

The size of the edge topology table is calculated as

size in bytes = number of rows * 6,336

Flow direction table (N_<n>_FLODIR)

The number of rows in the flow direction table is calculated as

number of rows = number of edges/65,536

Appendix A—Estimating the size of your tables and indexes 119

The size of the flow direction table is calculated as

size in bytes = number of rows * 40,960

Junction description table (N_<n>_JDESC)

The number of rows in the junction description table is calculated as

number of rows = number of junctions/1,638

The size of the junction description table is calculated as

size in bytes = number of rows * 24,986

Junction status table (N_<n>_JSTATUS)

The number of rows in the junction status table is calculated as

number of rows = number of junctions/65,536

The size of the junction status table is calculated as

size in bytes = number of rows * 40,960

Junction topology table (N_<n>_JTOPO)

The number of rows in the junction topology table is calculated as

number of rows = number of junctions/2,048

The size of the junction topology table is calculated as

size in bytes = number of rows * 24,865

Junction overflow topology table (N_<n>_JTOPO2)

The number of rows in the junction overflow topology table is calculated as

number of rows = number of junctions/20,480

The size of the junction overflow topology table is calculated as

120 ArcSDE Configuration and Tuning Guide for Oracle

size in bytes = number of rows * 29,257

Property table (N_<n>_PROP)

The number of rows in the network properties table is always 10.

number of rows = 10

The size of the network properties table is approximately 250 bytes.

size in bytes ≈ 250

The network properties table will always occupy one data block.

Edge weight table (N_<n>_E<w>)

The number of rows in an edge weight table is calculated as

number of rows = number of edges/2,048

The size of the junction overflow topology table is calculated as

size in bytes = number of rows * 24,865

Junction weight table (N_<n>_J<w>)

The number of rows in the junction overflow topology table is calculated as

number of rows = number of junctions/2,048

The size of the junction overflow topology table is calculated as

size in bytes = number of rows * 24,865

The raster data tables
Four raster data tables are created whenever a user adds a raster column to a business
table. A row is added to the sde raster_columns system table for each raster column
created in the database. Each new raster column is given a unique ID called a
rastercolumn_id. The rastercolumn_id is used in the naming of the raster data tables.

Appendix A—Estimating the size of your tables and indexes 121

Raster data schema consists of four tables and their associated indexes. The four tables
and their associated indexes are:

1. The raster table (SDE_RAS_<raster_column_id>) stores one record for each raster.
The number of raster table rows is always less than or equal to the number of
business table rows. If each row of the business table has an image stored in the
raster tables, then the number of rows is equal. If some of the business table rows do
not have an image associated with them, then the number for raster tables is less.

The raster table has a single unique index on the raster_id column
(SDE_RAS_<raster_column_id>_UK).

2. The raster bands table (SDE_BND_<raster_column_id>) stores one record for each
raster band. The one-to-many relationship between the raster table and the raster
bands table is maintained by the primary/foreign key raster_id column. The number
of rows in the raster bands table can be determined by multiplying the number of
image bands by the number of raster table rows.

The raster bands table has two unique indexes, one on the rasterband_id column
(SDE_BND_<raster_column_id>_UK1) and the other a composite of the raster_id
and sequence_nbr columns (SDE_BND_<raster_column_id>_UK2).

3. The data stored in the raster auxiliary table (SDE_AUX_<raster_column_id>) is
optional. Therefore, a zero-to-many relationship exists between the raster bands
table and the raster auxiliary table. The tables are joined on the primary/foreign key
relationship of the rasterband_id column. The raster auxiliary table stores one
record of metadata about each band. For example, if the image has a color map
associated with it, one record will be added to the auxiliary table for each record in
the raster band table. If you elect to create statistics for the raster, one record will be
added for each record in the raster bands table. If you are not sure how much
metadata will be stored for each raster, you don’t need to be overly concerned since
the size of this table is small.

The raster auxiliary table has one unique index, a composite of the type, and
rasterband_id columns (SDE_AUX_<raster_column_id>_UK).

4. The raster blocks table (SDE_BLK_<raster_column_id>) stores the raster band
pixels as blocks defined by the block’s dimensions. A one-to-many relationship
exists between the raster bands table and the raster blocks table. The number of
rows in the raster blocks table can be estimated by first determining the pixels
required to complete a block, dividing this number into the total number of pixels
within a band, and multiplying the result by the number of bands in the raster. If
you have elected to store a resolution pyramid, multiply the result by 1.33 to
account for the resolution pyramid blocks.

122 ArcSDE Configuration and Tuning Guide for Oracle

The raster blocks table has one unique index—a composite of the rasterband_id,
rrd_factor, row_nbr, and col_nbr columns (SDE_BLK_<raster_column_id>_UK).

Raster table (SDE_RAS_<raster_column_id>)

Roughly 2,400 raster table rows fit in a 16 KB Oracle data block, given an Oracle data
block that is 10 percent free with four initial transactions. To roughly estimate the
number of data blocks required to store the rows of the raster table, divide the total
number of rows you expect the table to have by 2,400.

Raster bands table (SDE_BND_<raster_column_id>)

Approximately 190 raster band table rows fit within a 16 KB Oracle data block, given an
Oracle data block that is 10 percent free with four initial transactions. To roughly
estimate the number of data blocks required to store the rows of the raster bands table,
divide the total number of rows you expect the table to have by 190.

Raster auxiliary table (SDE_AUX_<raster_column_id>)

Approximately six raster auxiliary table rows fit within a 16 KB Oracle data block,
given an Oracle data block that is 10 percent free with four initial transactions. To
roughly estimate the number of data blocks required to store the rows of the raster
auxiliary table, divide the total number of rows you expect the table to have by six.

Raster blocks table (SDE_BLK_<raster_column_id>)

The size of the raster blocks table varies depending on whether you have built a
resolution pyramid and whether an image compression method has been applied. The
addition of the pyramid will increase the number of rows in the raster blocks table from
the base level by a factor of one-third.

The pixel depth affects the row size of the raster block. Single-bit pixels require less
storage space than do 4-bit pixels, which in turn require less space than 8-bit pixels, and
so on.

The pixel dimension of the raster blocks also affects the row size of the raster blocks.
Larger dimensions require more space. For example, the storage space of a 64 x 64 pixel
raster block requires a quarter of the space of a 128 x 128 raster block.

Compression reduces the total size of the stored image in a manner similar to the
algorithmic compression of ASCII files. The software interrogates rows of pixels

Appendix A—Estimating the size of your tables and indexes 123

searching for equal valued groups and storing a single value and the pixel count, rather
than a string of equal values. Compression reduces the row size of the raster blocks.

Compression results vary from image to image; however, the table below provides a
general guideline for the number of Oracle 16 KB data blocks required to store raster
block table rows, given the image’s pixel depth. To compute the total number of 16 KB
Oracle data blocks required, multiply the expected number of rows in the raster block’s
table by the appropriate Oracle data blocks per row factor in the following table. If you
created the database with an Oracle data block size of 8, multiply the result by 2.

 Pixel Depth

Compression 1-bit 8-bit 16-bit 32-bit

None 0.17 1.5 2.6 4.5

LV77 0.01 0.55 0.78 1.08

Number of 16 KB Oracle data blocks required to store a row of the raster blocks table for a given pixel
depth

The indexes
All of the indexes, with the exception of the spatial index table’s S<n>_IX1, index
single-integer columns. The spatial index table’s S<n>_IX1 indexes all of the columns
of the table. Since the definition of the indexes is fixed, the size of the indexes can be
based on the number of rows they index. The space for all indexes, except the spatial
index table’s S<n>_IX index, can be calculated using the following formula:

adjusted size = 500 rows per data block * (1 - PCTFREE)

total data blocks = table rows/adjusted size

tablespace size = total data blocks * data block size

For the S<n>_IX1 index, the formula is

adjusted size = 150 rows per data block * (1 - PCTFREE)

total data blocks = table rows/adjusted size

tablespace size = total data blocks * data block size

124 ArcSDE Configuration and Tuning Guide for Oracle

A P P E N D I X B

Storing raster data

A raster is a rectangular array of equally spaced cells that, taken as a

whole, represent thematic, spectral, or picture data. Raster data can

represent everything from qualities of land surface, such as elevation or

vegetation, to satellite images, scanned maps, and photographs.

You are probably familiar with raster formats such as tagged image file

format (TIFF), Joint Photographic Experts Group (JPEG), and Graphics

Interchange Format (GIF) that your Internet browser renders. These

raster images are composed of one or more bands. Each band is

segmented into a grid of square pixels. Each pixel is assigned a value that

reflects the information it represents at a particular position.

For an expanded discussion of the type of raster data supported by ESRI products,
review Chapter 9, ‘Cell-based modeling with rasters’, in Modeling Our World.

ArcSDE stores raster datasets similar to the way it stores compressed binary feature
classes (see Appendix C, ‘ArcSDE compressed binary’). A raster column is added to a
business table, and each cell of the raster column contains a reference to a raster stored in
a separate raster table. Therefore, each row of a business table references an entire raster.

ArcSDE stores the raster bands in the raster bands table. ArcSDE joins the raster band
table to the raster table on the raster_id column. The raster band table’s raster_id column
is a foreign key reference to the raster table’s raster_id primary key.

ArcSDE automatically stores any existing image metadata, such as image statistics, color
maps, and coordinate transformations in the raster auxiliary table. The rasterband_id
column of the raster auxiliary table is a foreign key reference to the primary key of the

126 ArcSDE Configuration and Tuning Guide for Oracle

raster band table. ArcSDE joins the two tables on this primary/foreign key reference
when accessing a raster band’s metadata.

The raster blocks table stores the pixels of each raster band. ArcSDE tiles the pixels into
blocks according to a user-defined dimension. ArcSDE does not have a default
dimension; however, applications that store raster data in ArcSDE do. ArcCatalog, for
example, uses a default raster block dimensions of 128 x 128 pixels per block. The

Appendix B—Storing raster data 127

dimensions of the raster block, along with any specified compression method, determine
the storage size of each raster block. You should choose raster block dimensions that,
combined with the compression method, allow each row of the raster block table to fit
within an Oracle data block. For Oracle databases, storing raster data should be created
with a 16 KB Oracle data block size. See Appendix A, ‘Estimating the size of your
tables and indexes’, for more information on estimating the size of your raster tables and
indexes.

Using a compression method, such as lossless lz77, almost always results in improved
performance. The savings in disk space and network I/O offset the additional CPU
cycles required for the application to decompress the image.

The raster blocks table contains the rasterband_id column, which is a foreign key
reference to the raster band table’s rasterband_id primary key. ArcSDE joins these tables
together on the primary/foreign key reference when accessing the blocks of the raster
band.

ArcSDE populates the raster blocks table according to a declining resolution pyramid.
The number of levels specified by the application determines the height of the pyramid.
The application, such as ArcCatalog, may allow you to define the levels, request that
ArcSDE calculate them, or offer both possible choices.

The pyramid begins at the base, or level 0, which contains the original pixels of the
image. The pyramid proceeds toward the apex by coalescing four pixels from the
previous level into a single pixel at the current level. This process continues until less
than four pixels remain or until ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels.
The additional levels of the pyramid increase the number of raster block table rows by
one-third. However, since it is possible for the user to specify the number of levels, the
true apex of the pyramid may not be obtained, limiting the number of records added to
the raster blocks table.

When you build a pyramid, more rasters are
created by progressively downsampling the
previous level by a factor of two until the apex is
reached. As the application zooms out and the
raster cells grow smaller than the resolution
threshold, ArcSDE selects a higher level of the
pyramid. The purpose of the pyramid is to optimize
display performance.

128 ArcSDE Configuration and Tuning Guide for Oracle

The pyramid allows ArcSDE to provide the application with a constant resolution of
pixel data regardless of the rendering window’s scale. Data of a large raster transfers
more quickly to the client when a pyramid exists since ArcSDE can transfer fewer cells
of a reduced resolution.

Raster schema
When you import a raster into an ArcSDE database, ArcSDE adds a raster column to the
business table of your choice. You may name the raster column whatever you like, so
long as it conforms to Oracle’s column naming convention. ArcSDE restricts one raster
column per business table.

The raster column is a foreign key reference to the raster_id column of the raster table
created during the addition of the raster column. Also joined to the raster table’s
raster_id primary key, the raster band table stores the bands of the image. The raster
auxiliary table, joined one to one to the raster band table by rasterband_id, stores the
metadata of each raster band. The rasterbands_id also joins the raster band table to the
raster blocks table in a many-to-one relationship. The raster blocks table rows store
blocks of pixels, determined by the dimensions of the block.

The sections that follow describe the schema of the tables associated with the storage of
raster data. Refer to the following figure for an illustration of these tables and the manner
in which they are associated with one another.

Appendix B—Storing raster data 129

When ArcSDE adds a raster column to a table, it records that column in the SDE user’s
raster_columns table. The rastercolumn_id table is used in the creation of the table names of the
raster, raster band, raster auxiliary, and raster blocks table.

RASTER_COLUMNS table

When you add a raster column to a business table, ArcSDE adds a record to the
RASTER_COLUMNS system table maintained in the SDE user’s schema. ArcSDE also
creates four tables to store the raster images and metadata associated with each one.

130 ArcSDE Configuration and Tuning Guide for Oracle

NAME DATA TYPE NULL?

rastercolumn_id NUMBER(38) NOT NULL

description VARCHAR2(65) NULL

database_name VARCHAR2(32) NULL

owner VARCHAR2(32) NOT NULL

table_name VARCHAR2(160) NOT NULL

raster_column VARCHAR2(32) NOT NULL

cdate NUMBER(38) NOT NULL

config_keyword VARCHAR2(32) NULL

minimum_id NUMBER(38) NULL

base_rastercolumn_id NUMBER(38) NOT NULL

rastercolumn_mask NUMBER(38) NOT NULL

srid NUMBER(38) NULL

Raster columns table

• rastercolumn_id (SE_INTEGER_TYPE)—The table’s primary key.

• description (SE_STRING_TYPE)—The description of the raster table.

• database_name (SE_STRING_TYPE)—Field is always NULL for Oracle.

• owner (SE_STRING_TYPE)—The owner of the raster column’s business table.

• table_name (SE_STRING_TYPE)—The business table name.

• raster_column (SE_STRING_TYPE)—The raster column name.

• cdate (SE_INTEGER_TYPE)—The date the raster column was added to the
business table.

• config_keyword (SE_STRING_TYPE)—The DBTUNE configuration keyword
whose storage parameters determine how the tables and indexes of the raster are
stored in the Oracle database. For more information on DBTUNE configuration
keywords and their storage parameters, review Chapter 3, ‘Configuring DBTUNE
storage parameters’.

• minimum_id (SE_INTEGER_TYPE)—Defined during the creation of the raster,
establishes value of the raster table’s raster_id column.

• base_rastercolumn_id (SE_INTEGER_TYPE)—If a view of the business table is
created that includes the raster column, an entry is added to the
RASTER_COLUMNS table. The raster column entry of the view will have its own
rastercolumn_id. The base_rastercolumn_id will be the rastercolumn_id of the
business table used to create the view. This base_rastercolumn_id maintains

Appendix B—Storing raster data 131

referential integrity to the business table. It ensures that actions performed on the
business table raster column are reflected in the view. For example, if the business
table’s raster column is dropped, it will also be dropped from the view (essentially
removing the view’s raster column entry from the RASTER_COLUMNS table).

• rastercolumn_mask (SE_INTEGER_TYPE)—Currently not used; maintained for
future use.

• srid (SE_INTEGER_TYPE)—The spatial reference ID is a foreign key reference to
the SPATIAL_REFERENCES table. For images that can be georeferenced, the
SRID references the coordinate reference system the image was created under.

Business table

In the example that follows, the fictitious BUILDING_FOOTPRINTS business table
contains the raster column house_image. This is a foreign key reference to the raster
table created in the user’s schema. In this case the raster table contains a record for each
raster of a house. It should be noted that images of houses cannot be georeferenced.
Therefore, the SRID column of the RASTER_COLUMN record for this raster is NULL.

NAME DATA TYPE NULL?

building_id NUMBER(38) NOT NULL

building_footprint NUMBER(38) NOT NULL

house_picture NUMBER(38) NOT NULL

BUILDING_FOOTPRINTS business table with house image raster column

• building_id (SE_INTEGER_TYPE)—The table’s primary key

• building_footprints (SE_INTEGER_TYPE)—A spatial column and foreign key
reference to a feature table containing the building footprints

• house_image (SE_INTEGER_TYPE)—A raster column and foreign key reference
to a raster table containing the images of the houses located on each building
footprint

Raster table (SDE_RAS_<rastercolumn_id>)

The raster table, created as SDE_RAS_<raster_column_id> in the Oracle database,
stores a record for each image stored in a raster column. The raster_column_id is
assigned by ArcSDE whenever a raster column is created in the database. A record for
each raster column in the database is stored in the ArcSDE RASTER_COLUMNS
system table maintained in the SDE user’s schema.

132 ArcSDE Configuration and Tuning Guide for Oracle

NAME DATA TYPE NULL?

raster_id NUMBER(38) NOT NULL

raster_flags NUMBER(38) NULL

description VARCHAR2(65) NULL

Raster description table schema (SDE_RAS_<raster_column_id>)

• raster_id (SE_INTEGER_TYPE)—The primary key of the raster table and unique
sequential identifier of each image stored in the raster table

• raster_flags (SE_INTEGER_TYPE)—A bit map set according to the characteristics
of a stored image

• description (SE_STRING_TYPE)—A text description of the image (not
implemented at ArcSDE 8.1)

Raster band table (SDE_BND_<rastercolumn_id>)

Each image referenced in a raster may be subdivided into one or more raster bands. The
raster band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of
each image stored in the raster table. The raster_id column of the raster band table is a
foreign key reference to the raster table’s raster_id primary key. The rasterband_id
column is the raster band table’s primary key. Each raster band in the table is uniquely
identified by the sequential rasterband_id.

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

sequence_nbr NUMBER(38) NOT NULL

raster_id NUMBER(38) NOT NULL

name VARCHAR2(65) NULL

band_flags NUMBER(38) NOT NULL

band_width NUMBER(38) NOT NULL

band_height NUMBER(38) NOT NULL

band_types NUMBER(38) NOT NULL

block_width NUMBER(38) NOT NULL

block_height NUMBER(38) NOT NULL

block_origin_x NUMBER(64) NOT NULL

block_origin_y NUMBER(64) NOT NULL

eminx NUMBER(64) NOT NULL

eminy NUMBER(64) NOT NULL

emaxx NUMBER(64) NOT NULL

emaxy NUMBER(64) NOT NULL

Appendix B—Storing raster data 133

cdate NUMBER(38) NOT NULL

mdate NUMBER(38) NOT NULL

Raster band table schema

• rasterband_id (SE_INTEGER_TYPE)—The primary key of the raster band table
that uniquely identifies each raster band.

• sequence_nbr (SE_INTEGER_TYPE)—An optional sequential number that can be
combined with the raster_id as a composite key as a second way to uniquely
identify the raster band.

• raster_id (SE_INTEGER_TYPE)—The foreign key reference to the raster table’s
primary key. Uniquely identifies the raster band when combined with the
sequence_nbr as a composite key.

• name (SE_STRING_TYPE)—The name of the raster band.

• band_flags (SE_INTEGER_TYPE)—A bit map set according to the characteristics
of the raster band.

• band_width (SE_INTEGER_TYPE)—The pixel width of the band.

• band_height (SE_INTEGER_TYPE)—The pixel height of the band.

• band_types (SE_INTEGER_TYPE)—A bitmap band compression data.

• block_width (SE_INTEGER_TYPE)—The pixel width of the band’s tiles.

• block_height (SE_INTEGER_TYPE)—The pixel height of the band’s tiles.

• block_origin_x (SE_FLOAT_TYPE)—The leftmost pixel.

• block_origin_y (SE_FLOAT_TYPE)—The bottommost pixel.

If the image has a map extent, the optional eminx, eminy, emaxx, and emaxy will hold
the coordinates of the extent.

• eminx (SE_FLOAT_TYPE)—The band’s minimum x coordinate

• eminy (SE_FLOAT_TYPE)—The band’s minimum y coordinate

• emaxx (SE_FLOAT_TYPE)—The band’s maximum x coordinate

• emaxy (SE_FLOAT_TYPE)—The band’s maximum y coordinate

134 ArcSDE Configuration and Tuning Guide for Oracle

• cdate (SE_FLOAT_TYPE)—The creation date

• mdate (SE_FLOAT_TYPE)—The last modification date

Raster blocks table (SDE_BLK_<rastercolumn_id>)

Created as SDE_BLK_<rastercolumn_id>, the raster blocks table stores the actual pixel
data of the raster images. ArcSDE evenly tiles the bands into blocks of pixels. Tiling the
raster band data enables efficient storage and retrieval of the raster data. The raster
blocks can be configured so that the records of the raster block table fit with an Oracle
data block, avoiding the adverse effects of data block chaining.

The rasterband_id column of the raster block table is a foreign key reference to the raster
band table’s primary key. A composite unique key is formed by combining the
rasterband_id, rrd_factor, row_nbr, and col_nbr columns.

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

rrd_factor NUMBER(38) NOT NULL

row_nbr NUMBER(38) NOT NULL

col_nbr NUMBER(38) NOT NULL

block_data LONG RAW or BLOB NOT NULL

Raster block table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster
band table’s primary key.

• rrd_factor (SE_INTEGER_TYPE)—The reduced resolution dataset factor
determines the position of the raster band block within the resolution pyramid. The
resolution pyramid begins at 0 for the highest resolution and increases until the
raster band’s lowest resolution level has been reached.

• row_nbr (SE_INTEGER_TYPE)—The block’s row number.

• col_nbr (SE_INTEGER_TYPE)—The block’s column number.

• block_data (SE_BLOB_TYPE)—The block’s tile of pixel data.

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>)

The raster band auxiliary table, created as SDE_AUX_<rastercolumn_id>, stores
optional raster metadata such as the image color map, image statistics, and coordinate
transformations used for image overlay and mosaicking. The rasterband_id column is a
foreign key reference to the primary key of the raster band table.

Appendix B—Storing raster data 135

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

type NUMBER(38) NOT NULL

object LONG RAW or BLOB NOT NULL

Raster auxiliary table schema

• rasterband_id (SE_INTEGER_TYPE)—The foreign key reference to the raster
band table’s primary key

• type (SE_INTEGER_TYPE)—A bit map set according to the characteristics of the
data stored in the object column

• object (SE_BLOB_TYPE)—May contain the image color map, image statistics, or
coordinate transformation

136 ArcSDE Configuration and Tuning Guide for Oracle

A P P E N D I X C

ArcSDE compressed binary

ArcSDE uses a compressed binary format to store geometry in either an

Oracle binary LONG RAW or BLOB data type. ArcSDE stores

compressed binary spatial data in the POINTS columns of the feature

table. Compressing the geometry offers efficient storage and retrieval of

spatial data by reducing the size of the geometry. Compressed binary

stored in the LONG RAW data type is the default storage format for

ArcSDE feature classes.

Compressed binary
ArcSDE verifies the geometry, compresses it, and sends it to the Oracle instance, where
it is inserted into a feature table in compressed binary format. Compressing the geometry
on the client offloads the task from the ArcSDE server and reduces the transmission time
to send the geometry to the ArcSDE server. Storing compressed geometry data reduces
the space required to store data by as much as 40 percent.

Compressed binary schema

A compressed binary feature class comprises three tables: the business table, the feature
table, and the spatial index table.

The business table contains attributes and a spatial column. The spatial column is a key
to the feature and spatial index tables.

The relationship between the business table and the feature table is managed through the
spatial column and the FID column. This key, which is maintained by ArcSDE, is
unique.

138 ArcSDE Configuration and Tuning Guide for Oracle

NAME DATA TYPE NULL?

fid NUMBER(38) NOT NULL

numofpts NUMBER(38) NOT NULL

entity NUMBER(38) NOT NULL

eminx NUMBER(64) NOT NULL

eminy NUMBER(64) NOT NULL

emaxx NUMBER(64) NOT NULL

emaxy NUMBER(64) NOT NULL

eminz NUMBER(64) NULL

emaxz NUMBER(64) NULL

min_measure NUMBER(64) NULL

max_measure NUMBER(64) NULL

area NUMBER(64) NOT NULL

len NUMBER(64) NOT NULL

points LONG RAW or BLOB NULL

anno_text VARCHAR2(256) NULL

Feature table schema

The feature table stores the geometry, annotation, and computer-aided design (CAD)
elements in the POINTS column. The POINTS column may be defined as either LONG
RAW or BLOB depending on the setting of the GEOMETRY_STORAGE DBTUNE
storage parameter. Set the GEOMETRY_STORAGE DBTUNE storage parameter to
SDEBINARY if you want to store the compressed binary spatial data in a column
defined as LONG RAW; otherwise, set the storage parameter to SDELOB if you want
to store the compressed binary spatial data in a column defined as BLOB.

For an expanded discussion of the GEOMETRY_STORAGE DBTUNE storage
parameter, see Chapter 3, ‘Configuring DBTUNE storage parameters’.

The ArcSDE datatype for each column is defined below.

• fid (SE_INTEGER_TYPE)—Contains the unique ID that joins the feature table to
the business table

• entity (SE_INTEGER_TYPE)—The type of geometric feature stored in the spatial
column (e.g., point, linestring)

• numofpts (SE_INTEGER_TYPE)—The number of points defining the geometry

• eminx, eminy, emaxx, emaxy (SE_FLOAT_TYPE)—The envelope of the
geometry

• eminz (SE_FLOAT_TYPE)—The minimum z-value in the geometry

Appendix C—ArcSDE compressed binary 139

• emaxz (SE_FLOAT_TYPE)—The maximum z-value in the geometry

• min_measure (SE_FLOAT_TYPE)—The minimum measure value in the geometry

• max_measure (SE_FLOAT_TYPE)—The maximum measure value in the
geometry

• area (SE_FLOAT_TYPE)—The area of the geometry

• len (SE_FLOAT_TYPE)—The length or perimeter of the geometry

• points (SE_SHAPE_TYPE)—Contains the byte stream of point coordinates that
define the geometry

• anno_text (SE_STRING_TYPE)—Contains the feature annotation string

NAME DATA TYPE NULL?

sp_fid NUMBER(38) NOT NULL

gx NUMBER(38) NOT NULL

gy NUMBER(38) NOT NULL

eminx NUMBER(64) NOT NULL

eminy NUMBER(64) NOT NULL

emaxx NUMBER(64) NOT NULL

emaxy NUMBER(64) NOT NULL

Spatial index table schema

The spatial index table defines the grid range and extent of all geometry in an ArcSDE
feature class.

• sp_fid—Contains the unique ID that joins the feature table to the business table

• gx/gy—Defines the feature’s extent in grid cells

• eminx/eminy/emaxx/emaxy—Defines the extent of the feature in system units

In this example the FEATURE-ID column from the WELLS business table references
features from the feature and spatial index tables:

WELL_ID DEPTH ACTIVE FEATURE-ID
1 30029 Yes 101
2 13939 No 102
3 92891 No 103
… … …

140 ArcSDE Configuration and Tuning Guide for Oracle

FID AREA LEN EMINX,EMINY,… POINTS
101 <compressed feature>
102 <compressed feature>
103 <compressed feature>
… …

SP_FID GX GY {EMINX,EMINY,EMAXX,EMAXY}
101 70 100
102 70 100
103 71 100
…

 A business/feature/spatial index key reference

The spatial grid index
The spatial grid index is a two-dimensional index that spans a feature class, like the
reference grid you might find on a common road map. You may assign the spatial grid
index one, two, or three grid levels, each with its own distinct cell size. The mandatory
first grid level has the smallest cell size. The optional second and third grid cell levels are
disabled by setting them to 0. If enabled, the second grid cell size must be at least three
times larger than the first grid cell size and the third grid cell size must be three times
larger than the second grid cell size.

The spatial index table (S<feature class_id>) has seven integer columns that store the
grid cell values, feature envelopes, and corresponding feature IDs. Adding a feature to a
feature class adds one or more grid cells to the spatial index table. The number of
records added to the spatial index table depends on the number of grid cells the feature
spans.

The spatial index table contains two indexes. One index is on the SP_FID column,
which contains the feature ID. The other is a composite index that includes all of the
columns of the spatial index table. Since all of the columns of the spatial index table are
indexed, the values of the table are read from the leaf blocks of the index and not the
table data blocks. The result is less I/O and better performance. In addition, the spatial
index table is not accessed whenever the feature class is queried. Therefore, when
considering how to position the tables and indexes to reduce disk I/O contention, you
should be concerned about the positioning of the indexes of the spatial index table but
not the table itself.

Appendix C—ArcSDE compressed binary 141

Building the spatial index

Every time a feature class is added to a business table, a persistent spatial index is built
for it.

The ArcSDE server manages the spatial index throughout the life of the feature class. As
features are inserted, updated, or deleted, the spatial index is automatically updated.

A load-only mode disables spatial index management until loading completes. This
boosts loading performance substantially and is imperative for bulk loading efforts. No
queries are allowed in the load-only mode except native SQL-based queries.

Once loading has been completed, the spatial index is enabled by returning it to normal
I/O mode. The conversion from normal I/O mode to load-only I/O mode reconstructs the
spatial index.

Inserting, updating, or deleting a feature updates the spatial index when the feature class
is in normal I/O mode.

ArcSDE overlays the extent of each feature onto the lowest grid level to obtain the
number of grid cells. If the feature exceeds four cells, ArcSDE promotes the feature to
the next highest grid level, if you have defined one. ArcSDE will continue to promote
the feature until it fits within four cells or less or until the highest defined grid level is
reached. On the highest defined grid level, geometries can be indexed by more than four
grid cells.

ArcSDE adds the feature’s grid cells to the spatial index table with their corresponding
shape ID and feature envelope. The grid level is encoded with each grid cell.

In the example below, the feature class has two grid levels. Area shape 101 is located in
grid cell 4 on level 1. A record is added to the spatial index table because the feature
resides within four grid cells (in this case it is one). The envelope for area feature 102 is
located in cells 1 through 8 on level 1. Because the feature’s envelope resides in more
than four grid cells, the feature is promoted to level 2, where its envelope fits within two
grid cells. Feature 102 is indexed at level 2, and two records are added to the spatial
index table.

142 ArcSDE Configuration and Tuning Guide for Oracle

1 2 3 4

5 6 7 8

102 101

Level 1

Level 2
1 2

Shape 101 is indexed on grid level 1, while shape 102 is indexed on grid level 2, where it is in only two
grid cells.

Spatial queries and the spatial index

Spatial queries, such as finding all the lakes within a state boundary, use the spatial
index. The spatial index is used unless the search order has been set to
SE_ATTRIBUTE_FIRST in the SE_stream_set_spatial_constraints function. When the
search order is set to SE_ATTRIBUTE_FIRST, ArcSDE ignores the spatial index and
the criteria of the attribute’s where clause determines which records of the feature class
the query returns.

Whenever the spatial index is used, the ArcSDE service generally uses the following
decision process to perform the query:

1. Define the envelope. The envelope could be defined directly by the application such
as the extent defined by the ArcMap Zoom In tool. Alternatively, the envelope may
be defined as the envelope of another feature.

2. Join the spatial index table with the feature table and return all features whose grid
cells intersect the envelope.

3. Join the feature table with the business table and apply the criteria of the attribute’s
where clause to further refine the features returned.

Grid cell size impacts the size of the spatial index table. Setting up the spatial index
means balancing the cell sizes—smaller cell sizes mean more cells per shape, which
requires more entries in the spatial index table.

Appendix C—ArcSDE compressed binary 143

Guidelines for tuning the spatial index

Because client applications and spatial data profiles vary from one system to another, no
single solution fits all. Experienced users of ArcSDE often experiment with the spatial
index, trying different cell sizes and different grid-level configurations.

The sdelayer command has several operations that can help you optimize the spatial
index by changing the grid cell sizes and adding new grid levels with the “alter”
operation. The “stats” and “si_stats” operations profile your spatial data and current
spatial index.

The following guidelines can help improve the performance of spatial queries.

• Consider how many grid levels are needed and remember the ArcSDE server scans
the spatial index table once per grid level. Often a single grid level is the best
solution for a feature class, despite the notion of distributing geometries evenly
across many grid levels to minimize the spatial index entries.

• Use one grid level for pure point type feature class and consider making the cell
sizes large. Spatial queries generally process point geometries faster than other
geometry types.

• Monitor the spatial index. Tuning a spatial index is difficult if the data changes
frequently. Tuning depends on the structure of the spatial data. Periodically assess
the spatial index as your spatial data changes.

• Base the spatial index on the application. Match the spatial index grid cell sizes to
the extent of the application window. By doing so, the application is probably
viewing exact entries in the spatial index table. This helps to size the spatial index
table suitably and reduces the amount of processing because fewer candidate feature
IDs must be evaluated against the feature table (see ‘Spatial queries and the spatial
index’ above).

• For unknown or variable application windows, start by defining one grid level with
a cell size three times the average feature extent size. Query the feature table to
obtain the average feature size with the following SQL statement:

select (avg(emaxx - eminx) + avg(emaxy - eminy)) / 2
from f<N>;

(where <N> is the layer number of the feature class)

Such spatial index configuration minimizes the number of rows in the spatial index
table while maintaining the proficiency of the index because the majority of the
features can be referenced by less than one or two grid cells.

144 ArcSDE Configuration and Tuning Guide for Oracle

• Design the feature class around spatial data categories such as type, geometry size,
and distribution. Sometimes a carefully designed feature class, using these
categories, can substantially boost the performance of spatial queries.

Displaying spatial index statistics

The sdelayer command’s spatial index statistics operation, ‘si_stats’, can help you
determine optimum spatial index grid sizes. Optimum grid cell sizes depend on the
spatial extent of all feature geometries, the variation in feature geometry spatial extent,
and the types of searches to be performed on the map feature class. Below is a sample
output generated by si_stats:

$ sdelayer -o si_stats -l victoria,parcels -u av -p mo -i sde81
ArcSDE 8.1 Wed Jan 17 22:43:09 PST 2000
Layer Administration Utility
--
Layer 1 Spatial Index Statistics:
Level 1, Grid Size 200
|---|
| Grid Records: 978341 |
| Feature Records: 627392 |
| Grids/Feature Ratio: 1.56 |
| Avg. Features per Grid: 18.26 |
| Max. Features per Grid: 166 |
% of Features Wholly Inside 1 Grid: 59.71
Spatial Index Record Count By Group
Grids: <=4 >4 >10 >25 >50 >100 >250 >500
---------- ------ --- ---- ---- ---- ----- ----- -----
Shapes: 627392 0 0 0 0 0 0 0
% Total: 100% 0% 0% 0% 0% 0% 0% 0%

Level 2, Grid Size 1600 (Meters)

Grid Records: 70532
Feature Records: 36434
Grids/Feature Ratio: 1.94
Avg. Features per Grid: 18.21
Max. Features per Grid: 82
% of Features Wholly Inside 1 Grid: 45.35

Spatial Index Record Count By Group
Grids: <=4 >4 >10 >25 >50 >100 >250 >500
---------- ------ --- ---- ---- ---- ----- ----- -----
Shapes: 35682 752 87 17 3 0 0 0
% Total: 97% 2% 0% 0% 0% 0% 0% 0%

As the output shows, for each defined spatial index level, the following values and
statistics are printed:

• Grid level and cell size.

Appendix C—ArcSDE compressed binary 145

• Total spatial index records for the current grid level.

• Total geometries stored for the current grid level.

• Ratio of spatial index records per geometry.

• Geometry counts and percentages by group that indicate how geometries are
grouped within the spatial index at this grid level. The column headings have the
following meaning (where “N” is the number of grid cells):

<=N Number of geometries and percentage of total geometries that fall within <= N
grid cells
>N Number of geometries and percentage of total geometries that fall within > N
grid cells

Notice that the “>” groupings include count values from the next group. For instance,
the “>4” group count represents the number of geometries that require more than four
grid records as well as more than 10, and so on.

• Average number of geometries per grid.

• Maximum number of geometries per grid. This is the maximum number of
geometries indexed into a single grid.

• Percentage of geometries wholly inside one grid. This is the percentage of all
geometries wholly contained by one grid record.

The output sample shows spatial index statistics for a map feature class that uses two
grid levels: one that specifies a grid size of 200 meters, the other a grid size of 1,600
meters. When a geometry requires more than four spatial index records, it is
automatically promoted to the next grid level, if one is defined. A geometry will not
generate more than four records if a higher grid level is available.

In the example above, 627,392 features are indexed through grid level 1. Because the
system automatically promotes geometries that need more than four spatial index
records to the next defined grid level, all 627,392 geometries for grid level 1 are indexed
with four grid records or less. Grid level 2 is the last defined grid level, so geometries
indexed at this level are allowed to be indexed with more than four grid records. At grid
level 2, there are a total of 36,434 geometries and 70,532 spatial index records. There are
35,682 geometries indexed with four grid records or fewer, 752 geometries indexed with
more than four grid records, 87 geometries indexed with more than 10, 17 geometries
with more than 25, and three geometries with more than 50. Percentage values below
each column show how the geometries are dispersed through the eight groups.

146 ArcSDE Configuration and Tuning Guide for Oracle

Creating tables with compressed binary schema
The geometry storage format for ArcSDE feature classes defaults to LONG RAW
compressed binary. If you always store your geometry in this format, you do not need to
adjust the geometry storage format.

If you wish to have a mix of geometry types in your schema, add configuration
keywords to the DBTUNE table with the desired geometry storage format and assign the
configuration keywords to the feature classes.

The DBTUNE table storage parameter GEOMETRY_STORAGE defines the geometry
storage format of a feature class. The GEOMETRY_STORAGE value for the default,
LONG RAW compressed binary, is SDEBINARY. In the following example, a dbtune
file has a PARCELS configuration keyword that contains the value SDEBINARY.

##PARCELS
GEOMETRY_STORAGE SDEBINARY
<other parameters>
END

Additional storage parameters precisely define the storage configuration of the parcel’s
feature class.

##PARCELS

GEOMETRY_STORAGE "SDEBINARY"
B_STORAGE "TABLESPACE btabsp STORAGE (INITIAL 500M)"
B_INDEX_ROWID "TABLESPACE bindex_tsp STORAGE (INITIAL 100M)"
B_INDEX_SHAPE "TABLESPACE bindex_tsp STORAGE (INITIAL 100M)"
A_STORAGE "TABLESPACE atabsp STORAGE (INITIAL 100M)"
A_INDEX_ROWID "TABLESPACE aindex_tsp STORAGE (INITIAL 50M)"
A_INDEX_SHAPE "TABLESPACE aindex_tsp STORAGE (INITIAL 50M)"
A_INDEX_STATEID "TABLESPACE aindex_tsp STORAGE (INITIAL 50M)"
D_STORAGE "TABLESPACE atabsp STORAGE (INITIAL 50M)"
D_INDEX_STATE_ROWID "TABLESPACE dindex_tsp STORAGE (INITIAL 50M)"
D_INDEX_DELETED_AT "TABLESPACE dindex_tsp STORAGE (INITIAL 50M)"
F_STORAGE "TABLESPACE ftabsp STORAGE (INITIAL 500M)"
F_INDEX_FID "TABLESPACE findex_tsp STORAGE (INITIAL 50M)"
F_INDEX_AREA "TABLESPACE findex_tsp STORAGE (INITIAL 50M)"
F_INDEX_LEN "TABLESPACE findex_tsp STORAGE (INITIAL 50M)"
S_STORAGE "TABLESPACE stabsp STORAGE (INITIAL 300M)"
S_INDEX_ALL "TABLESPACE sindex_tsp STORAGE (INITIAL 100M)"
S_INDEX_SP_FID "TABLESPACE sindex_tsp STORAGE (INITIAL 100M)"
END

In this example, the storage schema is compressed binary; it defines the storage and
location for the business table, adds table, deletes table, feature table, and spatial index
table. Chapter 3, ‘Configuring DBTUNE storage parameters’, describes these storage
parameters as well as many others.

Appendix C—ArcSDE compressed binary 147

Tuning LOB storage
Large Object (LOB) data types are used by Oracle to store large, unstructured datasets.
ArcSDE uses this data type for large datasets that are processed by specialized ArcSDE
algorithms.

LOB data may be stored in-line, meaning that LOB and non-LOB data from the same
row in a table are stored in the same Oracle data block. Alternately, LOB data may be
stored out-of-line meaning that the LOB data is stored separately from the rest of the row
data in a special area set aside for it by the database. Oracle stores LOB data in-line or
out-of-line depending upon the size of the LOB and the storage parameters associated
with creation of the table holding the LOB data.

If the total size of a LOB datum plus the storage locator is less than 4,000 bytes and the
ENABLE STORAGE IN ROW clause is specified, the LOB datum is stored in the same
block as the rest of the row fields. If possible to achieve, this configuration will result in
less I/O to read a single LOB datum.

If the total size of a LOB datum plus the storage locator exceeds 4,000 bytes or the
DISABLE STORAGE IN ROW clause is specified, Oracle stores the LOB datum out-
of-line. This configuration will result in two I/Os to fetch a single LOB datum—the first
to fetch row data plus the LOB locator and a second to fetch LOB itself.

To create a new row with a LOB datum, Oracle effectively performs an INSERT of the
new row storing the row data and the LOB locator followed by an UPDATE of the same
row to add the actual LOB data. If several rows having LOB data are inserted in a single
SQL statement, all INSERTs are performed before any UPDATE.

This has important consequences on the storage parameters chosen for a table holding
LOB data. If, for example, you insert nine rows with LOB data and Oracle inserts them
into a single block, then performs the UPDATE, it may happen that none of the LOB
data fits into the original block and that all must chain or migrate to another block.
Setting a high value for PCTFREE will reduce this undesirable effect.

To calculate an appropriate value for PCTFREE, first estimate the average size of the
LOB data and the average size of the non-LOB data. If datasize is the amount of space
available in a block:

datasize = blocksize – blockheadersize

Then

 num_rows = TRUNC (datasize / (aveLOB + aveNonLOB))

148 ArcSDE Configuration and Tuning Guide for Oracle

will be the maximum number of rows expected to fit completely into a block. Set
PCTFREE to a value that will limit the amount of non-LOB data to be inserted, leaving
space for LOB data, as follows:

PCTFREE = 1 – (num_rows * aveNonLOB / datasize)

The F_STORAGE configuration string within the DBTUNE table controls the allocation
of space for feature tables. By default, PCTFREE is set to 30 in the F_STORAGE
configuration strings. A larger value of PCTFREE is necessary to reduce the problem of
row chaining that may occur when data is stored as a BLOB data type.

Referential integrity
Maintaining the referential integrity between the business and feature table is important.
You should not edit the records of either the feature table or the spatial index table.
Several indexes and constraints have been added to the business, feature, and spatial
index table to ensure referential integrity is maintained. However, these indexes and
constraints are removed when the feature class is converted to the load-only I/O mode, a
state that allows for rapid insertion of data into the feature class.

When the feature class is placed back into normal I/O mode—the state that allows users
to query the feature class through an ArcSDE client—the indexes are created and the
constraints are enabled. The conversion to normal I/O mode will fail if the unique
indexes cannot be built on the business table’s spatial column or the feature table’s FID
column. It will also fail if a value exists in the business table’s spatial column that is not
in the feature table’s FID column. In this case a reference to the offending business table
record is loaded into the SDE_EXCEPTIONS table.

A P P E N D I X D

Oracle Spatial geometry type

ArcSDE supports Oracle Spatial’s Object Relational Model as a method

to store spatial data. Oracle Spatial’s Object Relational Model was

introduced in Oracle8i using object-relational types and methods to

define, index, and perform spatial analysis on spatial data. For additional

information on Oracle Spatial, see the Oracle Spatial User’s Guide and

Reference for your Oracle release.

What is Oracle Spatial?
Oracle Spatial extends the Oracle database with the addition of spatial data management
functions. Oracle Spatial provides a SQL geometry type, spatial metadata schema,
indexing methods, functions, and implementation rules.

Oracle Locator is a subset of Oracle Spatial, available starting with Oracle9i. Oracle
Locator includes the SDO_GEOMETRY data type along with some of the functionality
provided with Oracle Spatial. Oracle Locator may be used with ArcSDE. Refer to
Oracle’s documentation for an explanation of the difference between Oracle Spatial and
Oracle Locator. Throughout this appendix, “Oracle Locator” can be used in place of
references to “Oracle Spatial”.

The Oracle Spatial User’s Guide and Reference for your Oracle release is a valuable
resource for more detailed information about Oracle Spatial and Oracle Locator. Refer to
this document if you have questions about Oracle Spatial architecture and functionality.

SDO_GEOMETRY

The Oracle Spatial geometry type SDO_GEOMETRY is implemented using Oracle’s
extensible object-relational type system. The SDO_GEOMETRY type stores information
about a geometry including its geometry type, spatial reference ID, interpolation type
(straight versus curved), and coordinate values.

150 ArcSDE Configuration and Tuning Guide for Oracle

The SDO_GEOMETRY type supports single and multipart point, line, and area
geometry. Geometries may be defined as having linear interpolation between coordinates
as defined by the OpenGIS Simple Feature Specification. Geometries may also be
constructed from circular curves or a combination of both interpolation methods.

Application programs are responsible for properly inserting, updating, and fetching the
contents of the SDO_GEOMETRY type using Oracle’s object-relational SQL interface.
Applications are also responsible for ensuring that the content of each geometry adheres
to the rules defined in the Oracle Spatial documentation. Oracle provides geometry
validation routines that can be executed after inserting geometries.

Note: Oracle’s geometry validation routines do not implement precisely the same set of
rules as the ArcSDE geometry validation. ArcSDE is designed to store
SDO_GEOMETRY that satisfies Oracle’s validation rules.

Metadata schema

Information about every SDO_GEOMETRY column should be recorded in the Oracle
Spatial metadata schema, though Oracle Spatial does not do this automatically. It is the
responsibility of software that uses Oracle Spatial data (such as ArcSDE) to insert and
update the metadata for each SDO_GEOMETRY column it creates or modifies. The
metadata contains the spatial column name, the name of the table it resides in and its
owner, the Oracle Spatial Reference Identifier (SRID), the number of dimensions, the
range of each dimension, and its identical coordinate tolerance.

Spatial index

Spatial indexes provide fast access to records based on the location of geometry. Oracle
Spatial provides three different spatial indexing methods: Fixed Quadtree, Hybrid
Quadtree, and R-tree indexes. R-tree spatial indexes are generally the most efficient and
easiest to create of the three. Oracle recommends using R-tree spatial indexes in most
situations.

Oracle Spatial provides the Spatial Index Advisor utility to assist in determining the best
type of spatial index for a given table. In addition, consult your Oracle Spatial User’s
Guide and Reference for detailed information on supported spatial index types, how to
create them, and the trade-offs of different spatial index methods.

Spatial functions

Oracle Spatial extends SQL with spatial search functions for primary and secondary
filtering. Using the SDO_FILTER function in a SQL query will perform a primary
spatial search utilizing the spatial index. Spatial predicates, such as SDO_RELATE and
SDO_CONTAINS, return secondary relationships between pairs of SDO_GEOMETRY
objects.

Appendix D—Oracle Spatial geometry type 151

Oracle Spatial has spatial transformation functions that change the form of an
SDO_GEOMETRY value. For example, the SDO_BUFFER function computes the
coordinates of a new SDO_GEOMETRY object as a buffer polygon at a given distance
surrounding the original geometry. Other spatial transformation functions include
SDO_DIFFERENCE and SDO_INTERSECTION.

Coordinate reference

Oracle Spatial provides access to many predefined coordinate reference systems using
SRID values. The SRID value, stored in the SDO_GEOMETRY object, specifies the
coordinate reference for the geometry stored in that object. The SRID in the
SDO_GEOMETRY object, if not NULL, is a foreign key in a table containing details
about each SRID. This table is called MDSYS.CS_SRS.

The SDO_TRANSFORM function uses the spatial reference ID to establish coordinate
reference transformations. ArcSDE may also use this information to create ArcSDE
spatial references.

How does ArcSDE use Oracle Spatial?
ArcSDE supports Oracle Spatial or Oracle Locator for storing and managing geometry in
an Oracle database.

Making Oracle Spatial your default geometry schema
When you install ArcSDE, the SDE compressed binary geometry schema is set as the
default storage type. The default settings for ArcSDE storage are defined in the
DBTUNE table—one of these parameters is the GEOMETRY_STORAGE method.

Changing the default ArcSDE geometry storage to use Oracle Spatial is easy. For the
DEFAULTS keyword, simply change the GEOMETRY_STORAGE parameter from
SDEBINARY to SDO_GEOMETRY. After the default GEOMETRY_STORAGE
setting has been changed to SDO_GEOMETRY, ArcSDE creates feature classes with
SDO_GEOMETRY columns by default.

Note: Use the sdedbtune administration command to alter DBTUNE settings.

ArcSDE for Oracle supports a number of different geometry storage schemas—these
different schemas can all be used together in the same database. While there can only be
one default geometry schema, individual tables can be created using different geometry
schemas. See Chapter 3, ‘Configuring DBTUNE storage parameters’, for instructions on
using DBTUNE to define different geometry schemas.

152 ArcSDE Configuration and Tuning Guide for Oracle

SDO_GEOMETRY columns

ArcSDE creates a feature class by adding a geometry column to the specified business
table. When the GEOMETRY_STORAGE parameter is set to SDO_GEOMETRY,
ArcSDE adds an SDO_GEOMETRY column to the business table. In this example, a
business table called COUNTRIES has name and population properties—after adding a
geometry column, it also has an SDO_GEOMETRY column named BORDERS. A
unique feature identifier column (OBJECTID in this example) is added.

NAME DATA TYPE NULL?

NAME VARCHAR2(32)

POPULATION NUMBER(11)

BORDERS MDSYS.SDO_GEOMETRY

OBJECTID NUMBER(38) NOT NULL

COUNTRIES business table schema

A geometry column can be added to the business table using ArcCatalog, the sdelayer
administration utility, or the ArcSDE C and Java APIs.

Spatial index

When an SDO_GEOMETRY column is added to a business table, a spatial index on that
geometry column is usually created. By default, ArcSDE creates an R-tree index on an
SDO_GEOMETRY column. ArcSDE also includes support for creating Oracle Spatial
Fixed and Hybrid indexes instead. Alternatively, ArcSDE can create feature classes with
no spatial index; however, spatial queries cannot be supported until a spatial index is
created. Oracle’s SDO_FILTER, used by ArcSDE, requires the presence of a spatial
index.

You can create a spatial index in several ways—in ArcCatalog; with sdelayer
administration utility, including appropriate DBTUNE configuration parameters; using
the Oracle Spatial Index Advisor; using SQL; or programmatically using the ArcSDE C
and Java APIs.

ArcSDE automatically drops and recreates Oracle Spatial indexes created by ArcSDE
whenever the feature class is switched between LOAD_ONLY_IO and NORMAL_IO
mode. Spatial indexes defined by the Oracle Spatial Index Advisor application or created
using SQL are not dropped when ArcSDE switches the feature class to
LOAD_ONLY_IO mode.

Oracle Spatial metadata

When ArcSDE adds an SDO_GEOMETRY column to a business table, it also adds the
required Oracle Spatial metadata record to the USER_SDO_GEOM_METADATA

Appendix D—Oracle Spatial geometry type 153

view. This metadata includes the table name, SDO_GEOMETRY column name, spatial
reference ID, and coordinate dimension information.

When an ArcSDE client application is used to delete Oracle Spatial tables, it also deletes
the Oracle Spatial metadata record for the table. If the ArcSDE command sdelayer –o
delete is used to unregister a table as a layer, ArcSDE deletes the Oracle Spatial metadata
record for the table, unless the table was autoregistered and autoregistration is currently
disabled.

Coordinate dimension

You can create ArcSDE geometry as 2D, 2D with measures, 3D, or 3D with measures.
When creating new feature classes or adding an SDO_GEOMETRY column to an
existing table, ArcSDE defines the Oracle Spatial dimension information (DIMINFO) as:

• The X ordinate is the first dimension.

• The Y ordinate is the second dimension.

• The Z ordinate is the third dimension if the feature class is defined as having
elevations.

• The M ordinate is the last dimension (third or fourth, depending on the presence or
absence of a Z ordinate) if the feature class is defined as having measures.

The dimension extents for X range, Y range, Z range, and M range may be calculated
from the actual data or based on fixed values in the DBTUNE table. See Chapter 3,
‘Configuring DBTUNE storage parameters’, for DBTUNE storage parameters to
establish predefined Oracle Spatial dimension properties and to change the name of any
dimension.

Coordinate reference

Oracle Spatial provides predefined coordinate references in the MDSYS.CS_SRS table.
When creating Oracle Spatial tables with ArcSDE, you can choose an Oracle Spatial
SRID through a DBTUNE configuration keyword. Identify the appropriate Oracle
Spatial coordinate reference description and set the feature class’s SDO_SRID DBTUNE
storage parameter to that value. For example:

SDO_SRID 8307

If the SDO_SRID storage parameter is not set in DBTUNE, the SRID of each
SDO_GEOMETRY value will be NULL, as will the corresponding SRID in the
metadata record in the USER_SDO_GEOM_METADATA view.

154 ArcSDE Configuration and Tuning Guide for Oracle

ArcSDE does not require setting the Oracle Spatial SRID. ArcSDE maintains the
coordinate reference information for each feature class in its own
SPATIAL_REFERENCES table independently from Oracle Spatial. However, setting
the Oracle SRID is useful if you intend to access the data from other applications.

Consult your Oracle Spatial User’s Guide and Reference for information on supported
coordinate references.

Storing geometry in SDO_GEOMETRY

When storing geometry in the database, ArcSDE populates the SDO_GEOMETRY
value from an ArcSDE API object called SE_SHAPE. The SE_SHAPE object can
contain simple and complex geometry that may include elevations, measures, CAD data,
annotation, and surface patches. The SDO_GEOMETRY data type supports a subset of
these geometric properties. Because there is not a one-to-one mapping of the components
in the SDO_GEOMETRY and the SE_SHAPE object, ArcSDE follows this set of rules
when storing ArcSDE data in Oracle Spatial tables.

• Create four-digit SDO_GTYPE based on the geometry’s entity type.

• The SDO_SRID is set to NULL if no Oracle Spatial coordinate reference is
provided in a DBTUNE parameter.

• Coordinate values are written using the appropriate coordinate reference system.

• Coordinates are written as X, Y, <Z>, and <M>, where the elevation and measure
ordinates are only defined if present in the source SE_SHAPE object.

• If elevations and/or measure ordinates are present in the source SE_SHAPE object,
all coordinates are stored with an elevation and/or measure ordinate.

• Elevations and measure ordinates are set to NaN in a specific geometry if they do
not contain an elevation or measure.

• Measures may be present on any geometry type (not just linestrings), and the first
and last coordinates need not contain measure values.

• Measures are not restricted to ascending or descending order.

• Circular curves are written to the SDO_GEOMETRY type when the layer is
registered with the CAD entity mask (“c”); otherwise, the curves are converted to
densified linestrings that closely represent the curve.

• Other nonlinear interpolated shapes (cubic spline, Bézier curves) are converted to
densified linestrings. (See “CAD and annotation properties” below.)

Appendix D—Oracle Spatial geometry type 155

• All ArcSDE-generated SDO_GEOMETRY values are generated from SE_SHAPE
objects that have passed the ArcSDE rigorous geometry validation. The validation
rules are described in the ArcSDE Developer Guide.

• Single part, non-nil (-e p) 2D or 3D point layers are stored in the SDO_POINT
member of the SDO_GEOMETRY object. Other variations of point features are
stored in the SDO_ORDINATE_ARRAY.

• ArcSDE does not support heterogeneous geometry collection in the
SDO_GEOMETRY object.

• ArcSDE does not encode SDO_ETYPE 0 elements in the SDO_GEOMETRY
object. SDO_ETYPE 0 elements are application-specific. See ‘Interoperability
considerations’ below for more information.

CAD and annotation properties

The SDO_GEOMETRY type cannot store all types of data that ArcSDE storage must
support. When storage of this data may be required (as determined from the geometry
type flags specified when the layer is created), ArcSDE adds a column called
SE_ANNO_CAD_DATA to the business table.

NAME DATA TYPE NULL?

NAME VARCHAR2(32)

POPULATION NUMBER(11)

BORDERS MDSYS.SDO_GEOMETRY

SE_ANNO_CAD_DATA BLOB

OBJECTID NUMBER(38) NOT NULL

COUNTRIES business table schema with the addition of CAD data

Whenever ArcSDE detects that the data source has CAD data, ArcSDE writes a simple
geometric representation of the CAD data into the SDO_GEOMETRY value and writes
the unmodified CAD data into the SE_ANNO_CAD_DATA value. If the data source
does not have CAD data, ArcSDE sets the SE_ANNO_CAD_DATA value to NULL.

The SE_ANNO_CAD_DATA property contains data from numerous ArcGIS
components:

• AutoCAD or MicroStation data from ArcSDE CAD Client

• Parametric objects, such as cubic splines and Bézier curves from ArcMap

• Surface patches from ArcMap Spatial Analyst

156 ArcSDE Configuration and Tuning Guide for Oracle

• Annotation from ArcInfo Workstation (pre-ArcGIS 8)

Spatial queries

ArcSDE uses the Oracle Spatial SDO_FILTER function to perform the primary spatial
query. ArcSDE performs secondary filtering of the SDO_GEOMETRY based on the
spatial relationship requested by the application.

Applications may also include Oracle Spatial primary and secondary filter functions in
the SQL Where clause supplied to ArcSDE. Using spatial filters in the Where clause,
applications can distribute the spatial query to the database server, the ArcSDE
application server, and the application itself.

 How ArcSDE uses existing Oracle Spatial tables
ArcSDE is designed to use tables containing SDO_GEOMETRY columns that were
created by other applications or using SQL (sometimes referred to as third party tables),
so long as the tables meet certain prerequisites.

Manual registration

You can use the ArcSDE administration command sdelayer –o register to manually
register a table as a layer. Manually registering tables as layers gives you more
control over how a table is registered than autoregistration does. Here is an example of
registering a table called TBL which contains point features (-e p) in a spatial column
called SHAPE. The table has an integer column, PID, that will be the user-maintained
unique feature identifier column (-C pid,USER).

sdelayer -o register -l tbl,shape -e p -C pid,USER -u <user> -p <pw>

Keep in mind, for a table to be registered with ArcSDE, it must meet at least the
following criteria:

• It must be owned by the user registering the table.

• It must have a single SDO_GEOMETRY column.

• It must have no other columns of a user-defined type.

• It must have a valid entry in the view USER_SDO_GEOM_METADATA.

• It must have a single type of geometry (points, lines, or polygons). Geometry
can be multipart.

Appendix D—Oracle Spatial geometry type 157

• It must have an integer, unique, not-NULL column suitable as a registered row
ID column. If the row ID column will be maintained by ArcSDE, it must be
NUMBER(38) UNIQUE NOT NULL.

• It should have a spatial index; otherwise, spatial queries are not possible.

• It should pass Oracle's geometry validation tests; otherwise, accessing these
geometries may have unexpected results.

Autoregistration

Autoregistration is a feature of ArcSDE that can discover and register Oracle Spatial
tables, allowing ArcSDE to access these tables as ArcSDE layers.

Autoregistration is controlled by the system configuration parameter
DISABLEAUTOREG, which is set to TRUE by default. This means that the default state
for autoregistration is off. To turn on autoregistration, use the following administration
command:

sdeconfig -o alter -v DISABLEAUTOREG=FALSE -u sde -p <sde_password>

Note: As of ArcSDE 9, the environment and dbinit.sde variable
SDEDISABLEAUTOREG is no longer used to disable autoregistration.

ArcSDE provides a list of registered layers to client applications at certain times, such as
when a user connects to the server using ArcCatalog or when running the command
sdelayer –o describe. In the process of providing this list, ArcSDE autoregistration
queries the Oracle Spatial metadata view, ALL_SDO_GEOM_METADATA, for tables
containing SDO_GEOMETRY columns in which the user has SELECT privileges and
that are not already registered as ArcSDE layers. When a table is discovered that matches
these criteria, ArcSDE automatically registers it, making the table available to ArcSDE
client applications.

To register the table, ArcSDE must know the geometry type. Autoregistration looks at
the first row in a newly discovered table to establish the ArcSDE geometry type.
Autoregistration will not register empty tables. If you know that the table contains rows
with differing geometry types, you can use the sdelayer administration utility to alter the
geometry type definition after autoregistration completes. Layers with multiple geometry
types are not visible in ArcGIS 8 or later.

ArcSDE with Oracle Spatial requires a column to uniquely identify each row. See the
section ‘Registered row ID column,’ later in this appendix. Autoregistration searches for
a column in the table to use as a unique feature identifier column. To qualify, the column
must be defined as NUMBER(38) UNIQUE NOT NULL. If such a column is found, it is
recorded in the ArcSDE table registry as the unique feature identifier column for the

158 ArcSDE Configuration and Tuning Guide for Oracle

table. If a suitable unique feature identifier column is not found, the table is registered,
but operations requiring a unique feature identifier are unavailable.

For SDO_GEOMETRY columns that have an Oracle Spatial SRID, ArcSDE stores the
information in the ArcSDE SPATIAL_REFERENCES table. ArcSDE sets its spatial
reference AUTH_NAME field to ORACLE and the AUTH_SRID field to the SRID
value. ArcSDE tests the coordinate reference description and, if it is valid, sets the
SRTEXT field to the Oracle Spatial coordinate reference description.

Interoperability considerations
There is a common misconception that applications can interoperate simply because they
support the same underlying geometry type. The geometry type is only one aspect of the
interoperability picture—a common understanding of rules, constraints, schema, and
implementation is also required.

Multiple SDO_GEOMETRY columns in a table

ArcSDE does not support multiple geometry columns in a table. Tables with multiple
SDO_GEOMETRY columns should be accessed through views that contain only one
SDO_GEOMETRY column.

Use the sdetable create_view operation to create views of business tables, or create a
view with SQL and manually register it with ArcSDE. Be sure to include the row ID
column from the same table from which you included the SDO_GEOMETRY column.

Single geometry type in an SDO_GEOMETRY column

While ArcSDE supports multiple geometry types in a geometry column, many
applications do not. For example, ArcGIS requires that a geometry column be restricted
to a single geometry type.

Oracle Spatial does not necessarily enforce geometry type constraints on an
SDO_GEOMETRY column. Without this enforcement, one application may want to
enforce a single geometry type constraint, but another application could insert different
geometry types.

One option to enforce geometry type constraints is to create an insert–update trigger that
checks the SDO_GEOMETRY GTYPE property to enforce geometry types. Using
Oracle9i, you have an additional option to constrain the geometry type on insert into a
table with a spatial index that was created with a special parameter.

Appendix D—Oracle Spatial geometry type 159

Geometry validation

ArcSDE validates geometry when inserting or updating geometries. However, Oracle
Spatial itself does not automatically enforce geometry validation on the insert or update
of an SDO_GEOMETRY value if you insert or update geometries using methods other
than ArcSDE clients. You can create an insert–update trigger to fire the
SDO_VALIDATE function to enforce validation of SDO_GEOMETRY types.

Note: As of ArcSDE 9.1, SDO_GEOMETRY features are not validated by ArcSDE
each time they are fetched. They are still validated when stored.

Problems would occur if illegal or poorly formed geometry values were passed to
ArcSDE client applications. To reduce the occurrences of these potential problems, you
should validate any geometries created or changed by any method other than an ArcSDE
client application. This validation should be done using the sdelayer –o feature_info
administration command. The feature_info operation of the sdelayer command
optionally includes, as part of its output information, whether or not a shape’s geometry
is valid for ArcSDE. For details on the use of this operation, refer to the Administration
Command Reference documentation included with your ArcSDE installation. Here is an
example of using sdelayer –o feature_info to find features that fail ArcSDE shape
validation.

sdelayer -o feature_info -l tbl,shape -r invalid . . .

ArcSDE geometry validation is not the same as Oracle Spatial geometry validation.
While it is important that geometries pass Oracle Spatial validation, successfully
validating geometries with Oracle’s validation routines does not guarantee that the
geometries will be suitable for ArcSDE.

Heterogeneous geometry collections

ArcSDE does not support heterogeneous geometry collections in an SDO_GEOMETRY
object.

SDO_ETYPE 0 elements

Oracle Spatial allows applications to insert application-specific data into an
SDO_GEOMETRY object. Applications do this by embedding this data using an
SDO_ETYPE value of 0. This allows applications great flexibility to store many types of
unconventional geometry and other data. However, the nature of the application-specific
data is known only to the application that generated that special SDO_GEOMETRY
object. Such application-specific data cannot be reliably supported in an interoperable
environment. Applications reading SDO_GEOMETRY objects probably would not
know how to interpret SDO_ETYPE 0 data created by other applications. Applications

160 ArcSDE Configuration and Tuning Guide for Oracle

updating SDO_GEOMETRY objects would not know how to edit or preserve the
SDO_ETYPE 0 data.

When reading SDO_GEOMETRY objects containing SDO_ETYPE 0 elements,
ArcSDE will ignore the SDO_ETYPE 0 data and will pass only the geometry elements it
supports to the application.

When updating SDO_GEOMETRY objects containing SDO_ETYPE 0 elements,
ArcSDE will not preserve the SDO_ETYPE 0 data. Therefore, applications that need to
ensure that SDO_ETYPE 0 data is preserved should ensure that users do not have
UPDATE access to the table.

Coordinate reference

ArcSDE requires that all SDO_GEOMETRY values in a column be in the same
coordinate reference system. If the coordinate reference is undefined, the SRID value
should be NULL as defined in the Oracle Spatial User’s Guide and Reference. With
Oracle9i, Oracle Spatial requires that the SRID in each geometry match each other and
the SRID in the spatial metadata, even if it the SRID is NULL.

Identification of elevations and measures

Oracle Spatial and ArcSDE both assume that the first and second dimensions of the
SDO_GEOMETRY are X and Y, respectively.

If an SDO_GEOMETRY object has three dimensions, ArcSDE assumes the third
dimension is a measure if the dimension name (in the spatial metadata) starts with an
“M”; otherwise, the third dimension is assumed to be an elevation. You can control how
ArcSDE interprets the third dimension by setting the feature class’s entity flag to have
either elevations or measures.

Oracle9i Release 2 extended the SDO_GTYPE member of the SDO_GEOMETRY type
to allow encoding of which dimension contains a measure ordinate. The second digit of
the four-digit SDO_GTYPE may be 0, 3, or 4. If it is 3 or 4, this indicates which
dimension contains the measure ordinate. ArcSDE 9 recognizes this encoding.

In this example, sdelayer sets the entity type of a feature class to store linestrings and
elevations:

sdelayer -o add -e l3

In this example, sdelayer sets the entity type of a feature class to store linestrings and
measures:

sdelayer -o add -e lM

If the SDO_GEOMETRY object has four dimensions, the measure is expected to be the
last ordinate.

Appendix D—Oracle Spatial geometry type 161

Measures and linear reference system

Oracle Spatial (but not Oracle Locator) provides functions for linear reference system
(LRS) calculations using measure values. The Oracle Spatial LRS functions require that
all measure values in a geometry be monotonically ascending or descending without NaN
values. Oracle Spatial LRS also restricts measure values to linestrings.

ArcSDE allows measures and LRS calculations on all geometric types with support for
arbitrarily ordered measure values and NaN values.

If you use Oracle Spatial LRS functions, design your application and database to operate
within the Oracle Spatial LRS constraints.

Registered row ID column

ArcSDE needs a unique feature identifier in the spatial table to perform spatial queries,
logfile queries, single-row operations, and multiversioned database operations. With SDE
compressed binary schema, the geometry column can serve this purpose because it is a
foreign key into the feature table and is defined as a non-NULL unique integer value.
SDO_GEOMETRY does not include a unique identifying integer value, so when
ArcSDE adds the SDO_GEOMETRY column to an existing table, it may also add a
unique identifying column. This column is often called OBJECTID, but it can have
another name. Or, an existing column can be used for the registered row ID column so
long as it is indexed and is an integer, UNIQUE, and NOT NULL. Row ID columns
maintained by ArcSDE must be NUMBER (38) UNIQUE NOT NULL.

A unique feature identifier column can be added using the sdetable administration
command or the ArcCatalog application. Many applications, such as ArcGIS Desktop,
require a unique feature identifier column in a table. Each application has its own
requirements and limitations.

Multiversioned database

ArcGIS Desktop uses a multiversioned database implemented through ArcSDE for
editing operations. The multiversioned database provides long transaction support for
multiple simultaneous design alternatives.

Multiversioned views are available for SQL access to the multiversioned database,
including Oracle Spatial tables registered as versioned. See the ArcSDE Developer Guide
for more information.

Networks and topology feature classes

ArcGIS Desktop can create and maintain networks and integrated topological feature
classes from simple feature classes that use the SDO_GEOMETRY type. ArcGIS

162 ArcSDE Configuration and Tuning Guide for Oracle

Desktop manages the relationships and maintains the topological integrity of the data—
modifications to the underlying features through ArcGIS Desktop are reflected in these
integrated networks.

Modification of Oracle Spatial feature classes participating in these networks should be
restricted to ArcGIS Desktop applications. Other applications can freely read the data, but
any modifications they make are not reflected in the networks.

Relationships and constraints

ArcGIS Desktop enforces relationships and constraints across many different data
sources. Feature classes containing an SDO_GEOMETRY type may be included in
relationships and may have constraints defined on them.

Modification of Oracle Spatial feature classes participating in relationships and
constraints should be restricted to ArcGIS Desktop applications. Other applications can
freely read the data, but their edits are not properly handled.

ArcSDE Oracle Spatial Support

Visit the ESRI Online Support Center (http://support.esri.com) for help with Oracle
Spatial issues.

A P P E N D I X E

The well-known binary
representation

The well-known binary representation for OGC geometry

(WKBgeometry) provides a portable representation of a geometry value

as a contiguous stream of bytes. It permits geometry values to be

exchanged between an ODBC client and a SQL database in binary form.

The well-known binary representation for geometry is obtained by

serializing a geometry instance as a sequence of numeric types drawn

from the set {Unsigned Integer, Double} and serializing each numeric

type as a sequence of bytes using one of two well-defined, standard

binary representations for numeric types, NDR or XDR. The specific

binary encoding used for a geometry byte stream is described by a one-

byte tag that precedes the serialized bytes. The only difference between

the two encodings of geometry is byte order. The XDR encoding is big-

endian, while the NDR encoding is little-endian.

164 ArcSDE Configuration and Tuning Guide for Oracle

Numeric type definitions
An unsigned integer is a 32-bit (4 byte) data type that encodes a nonnegative integer in
the range [0, 4294967295].

A double is a 64-bit (8 byte) double-precision data type that encodes a double-precision
number using the IEEE 754 double-precision format.

The above definitions are common to both XDR and NDR.

XDR (big endian) encoding of numeric types
The XDR representation of an unsigned integer is big endian (most significant byte
first).

The XDR representation of a double is big endian (sign bit is first byte).

NDR (little endian) encoding of numeric types
The NDR representation of an unsigned integer is little endian (least significant byte
first).

The NDR representation of a double is little endian (sign bit is last byte).

Conversion between the NDR and XDR representations of
WKB geometry

Conversion between the NDR and XDR data types for unsigned integers and doubles is
a simple operation involving the reversal of bytes within each unsigned integer or double
in the byte stream.

Appendix E—The well-known binary representation 165

Description of WKB geometry byte streams
The well-known binary representation for geometry is described below. The basic
building block is the byte stream for a point that consists of two doubles. The byte
streams for other geometries are built using the byte streams for geometries that have
already been defined.

// Basic Type definitions

// byte : 1 byte

// uint32 : 32 bit unsigned integer (4 bytes)

// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing

Point {
double x;
double y;
};

LinearRing {
uint32 numPoints;
Point points[numPoints];
}

166 ArcSDE Configuration and Tuning Guide for Oracle

enum wkbGeometryType {
wkbPoint = 1,
wkbLineString = 2,
wkbPolygon = 3,
wkbMultiPoint = 4,
wkbMultiLineString = 5,
wkbMultiPolygon = 6,
wkbGeometryCollection = 7
};

enum wkbByteOrder {

 wkbXDR = 0, // Big Endian

 wkbNDR = 1 // Little Endian

};

WKBPoint {
byte byteOrder;
uint32 wkbType; // 1
Point point;
}

WKBLineString {
byte byteOrder;
uint32 wkbType; // 2
uint32 numPoints;
Point points[numPoints];
}

WKBPolygon {
byte byteOrder;
uint32 wkbType; // 3
uint32 numRings;
LinearRing rings[numRings];
}

WKBMultiPoint {
byte byteOrder;
uint32 wkbType; // 4
uint32 num_wkbPoints;
WKBPoint WKBPoints[num_wkbPoints];
}

WKBMultiLineString {
byte byteOrder;
uint32 wkbType; // 5
uint32 num_wkbLineStrings;
WKBLineString WKBLineStrings[num_wkbLineStrings];
}

Appendix E—The well-known binary representation 167

wkbMultiPolygon {
byte byteOrder;

uint32 wkbType; // 6
uint32 num_wkbPolygons;
WKBPolygon wkbPolygons[num_wkbPolygons];
}

WKBGeometry {
union {
WKBPoint point;
WKBLineString linestring;
WKBPolygon polygon;
WKBGeometryCollection collection;
WKBMultiPoint mpoint;
WKBMultiLineString mlinestring;
WKBMultiPolygon mpolygon;
}
};

168 ArcSDE Configuration and Tuning Guide for Oracle

WKBGeometryCollection {
byte byte_order;
uint32 wkbType; // 7
uint32 num_wkbGeometries;
WKBGeometry wkbGeometries[num_wkbGeometries]
}

B=1 T=
3

NR=
2

NP=
3

X
1

Y
1

X
2

Y
2

X
3

Y
3

NP=
3

X
1

Y
1

X
2

Y
2

X
3

Y
3

Well-known binary representation for a geometry object in NDR format (B = 1) of type polygon (T = 3) with two linears (NR =
2) and each ring having three points (NP = 3).

WKB
Polygon

Ring 1 Ring 2

Appendix E—The well-known binary representation 169

Assertions for well-known binary representation for
geometry

The well-known binary representation for geometry is designed to represent instances of
the geometry types described in the geometry object model and in the OpenGIS Abstract
Specification.

These assertions imply the following for rings, polygons, and multipolygons:

Linear rings—Rings are simple and closed, which means that linear rings may not self-
intersect.

Polygons—No two linear rings in the boundary of a polygon may cross each other. The
linear rings in the boundary of a polygon may intersect, at most, at a single point but
only as a tangent.

Multipolygons—The interiors of two polygons that are elements of a multipolygon may
not intersect. The boundaries of any two polygons that are elements of a multipolygon
may touch at only a finite number of points.

170 ArcSDE Configuration and Tuning Guide for Oracle

A P P E N D I X F

Storing locators

A locator is an object that you can use to convert textual descriptions of

locations into geographic features. The most common locator is an

address locator, which you can use to geocode addresses. For additional

documentation on creating and using locators in ArcGIS, see Geocoding

in ArcGIS in the ArcGIS documentation set.

ArcSDE stores locator definitions in the SDE_locators table. Three main types of
locators can be stored in an ArcSDE database:

• Locator styles are used as templates on which to base new locators.

• Locators define the inputs, outputs, logic, and one or more reference datasets that are
used to find locations. Locators are usually created by adding some properties to a
locator style that specify which reference datasets and which columns in those
reference datasets to use to find locations. Using ArcCatalog to create a locator based
on a locator style is the easiest way to create a new locator.

• Attached locators are copies of locators that are used to create a geocoded feature
class. When you create a geocoded feature class by geocoding a table of addresses
using an address locator, ArcSDE stores a copy of the locator that was used to create
the geocoded feature class. ArcSDE uses this attached locator when you rematch
addresses in the geocoded feature class.

Each locator style, locator, and attached locator has a number of properties that define
the locator. ArcSDE stores each property of a locator as a record in the
SDE.METADATA table.

Address locators use a set of geocoding rules that define how addresses are parsed,
standardized, and matched to the reference data used by the address locator. ArcSDE
stores geocoding rules in the SDE.GCDRULES table. Each row in the
SDE.GCDRULES table corresponds to a single file in a set of geocoding rules. For

172 ArcSDE Configuration and Tuning Guide for Oracle

information on geocoding rule files, see the Geocoding Rule Base Developer Guide in
the ArcGIS documentation set.

Many address locators require a geocoding index table for each reference data table.
Geocoding index tables are tables used by a locator to quickly search for records in the
corresponding reference datasets that may be matches for an address. The XID column
in a geocoding index table is a foreign key to the OBJECTID column in the
corresponding reference dataset. When you create a new address locator that requires a
geocoding index table for a reference dataset, ArcSDE creates the geocoding index table
if it does not already exist.

When a locator is instantiated, ArcSDE reads the locator record from the
SDE.LOCATORS table and all of the corresponding locator properties from the
SDE.METADATA table. Some of the locator properties specify which set of geocoding
rules to use, which are read from the SDE.GCDRULES table. Other locator properties
specify which feature classes or tables in the ArcSDE database are used as reference
datasets and which geocoding index tables, if any, correspond to these reference
datasets.

When you use a locator to geocode an address, the locator uses the specified geocoding
rules to parse the given address into its components. If the locator uses geocoding index
tables to index the reference data, the locator properties specify which of these address
components to use to search for matches in the geocoding index table or tables and
which transformations (usually the Soundex function) to apply to the address
components when searching for records in the geocoding index table. ArcSDE searches
for records matching the geocoding index query in the geocoding index table. The
resulting set of records from the geocoding index table is joined to the corresponding
reference data table to generate a set of candidates for the address. ArcSDE uses the
locator’s properties to determine which columns in the reference data feature class or
table correspond to address components used by the locator and uses the geocoding rules
to assign a score to each candidate.

Locator schema
When you create a locator in an ArcSDE database, ArcSDE adds a record to the
SDE.LOCATORS table that defines the locator. ArcSDE also adds a record to the
SDE.METADATA table for each property of the locator. The object_name column in
the SDE.METADATA table is a foreign key to the Name column in the
SDE.LOCATORS table that ArcSDE uses to associate locators with their properties.

Each locator has associated FileMAT and FileSTN properties in the SDE.METADATA
table that define which geocoding rules the locator uses. The values of these properties
are in the format style.type, and define which geocoding rule files, stored in the

Appendix F—Storing locators 173

SDE.GCDRULES table, the locator uses to match addresses. The locator uses the value
of these properties in the SDE.METADATA table to query the SDE.GCDRULES table
on the STYLE and TYPE columns to retrieve the correct set of geocoding rules.
Locators that support intersection geocoding have associated IntFileMAT and
IntFileSTN properties that define the geocoding rules to use for intersection geocoding.

When you create an address locator, ArcSDE may create one or more geocoding index
tables for the reference datasets used by the locator, depending upon the locator style on
which the address locator is based. Geocoding index table names are prefixed with
“GC_” and include characters identifying the type of geocoding index table and the
Geodatabase object class ID of the table or feature class that it indexes. The XID column
in a geocoding index table is a foreign key to the OBJECTID column in the table or
feature class that the geocoding index table indexes.

In the example that follows, an ArcSDE database contains a STREET feature class that
represents street centerlines for a particular geographic area, such as a city. In addition to
the geometry for the street centerlines, the STREET feature class contains attributes for
the address ranges that can be found along the street and the components of the street
name. The ArcSDE table schema required to store a locator to allow address geocoding
on this feature class is shown below.

174 ArcSDE Configuration and Tuning Guide for Oracle

STREET
OBJECTID L_F_ADD L_T_ADD R_F_ADD R_T_ADD PREFIX PRE_TYPE NAME TYPE SUFFIX ZIPL ZIPR

1767 201 399 200 398 <null> <null> New York St <null> 92373 92373

GC_SZS826
SX XID LZONE RZONE

N620 1767 92373 92373

SDE_locators
locator_id name owner category type description

88 City_Streets SDE Address 1 US Streets with Zone
Address Locator

GCDRULES
ID STYLE TYPE DATA
41
42
43
44
45
51
52
53
54
55

us_addr
us_addr
us_addr
us_addr
us_addr1
us_intsc
us_intsc
us_intsc
us_intsc
us_intsc1

cls
dct
pat
stn
mat
cls
dct
pat
stn
mat

<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>
<Binary>

SDE_metadata
record_id

20874
20875
20878
20879
20979
20984

object_name object_owner

City_Streets
City_Streets
City_Streets
City_Streets
City_Streets
City_Streets

SDE
SDE
SDE
SDE
SDE
SDE

object_type

2
2
2
2
2
2

class_name

SDE internal
SDE internal
SDE internal
SDE internal
SDE internal
SDE internal

property

FileMAT
FileSTN
IntFileMAT
IntFileSTN
RD.Val.IdxTable1
RD.Val.Table1

prop_value

us_addr1.mat
us_addr.stn
us_intsc1.mat
us_intsc.stn
sde.SDE.GC_SZS826
sde.SDE.STREET

Business table

In this example, the STREET feature class represents street centerlines within a
particular geographic area and contains attributes that allow address locators to geocode
addresses using this feature class.

Appendix F—Storing locators 175

NAME DATA TYPE NULL?
OBJECTID NUMBER(38) NOT NULL
L_F_ADD NUMBER(38) NULL
L_T_ADD NUMBER(38) NULL
R_F_ADD NUMBER(38) NULL
R_T_ADD NUMBER(38) NULL
PREFIX VARCHAR2(2) NULL
PRE_TYPE VARCHAR2(5) NULL
NAME VARCHAR2(30) NULL
TYPE VARCHAR2(5) NULL
SUFFIX VARCHAR2(2) NULL
ZIPL VARCHAR2(5) NULL
ZIPR VARCHAR2(5) NULL
Shape NUMBER(38) or

SDO_GEOMETRY
NULL

 STREET business table

• OBJECTID (SE_INTEGER_TYPE)—The table’s primary key

• L_F_ADD (SE_INTEGER_TYPE)—The address at the start node on the left side
of the street feature

• L_T_ADD (SE_INTEGER_TYPE)—The address at the end node on the left side
of the street feature

• R_F_ADD (SE_INTEGER_TYPE)—The address at the start node on the right side
of the street feature

• R_T_ADD (SE_INTEGER_TYPE)—The address at the end node on the right side
of the feature

• PREFIX (SE_STRING_TYPE)—The prefix direction component of the street’s
name

• PRE_TYPE (SE_STRING_TYPE)—The prefix type component of the street’s
name

• NAME (SE_STRING_TYPE)—The base component of the street’s name

• TYPE (SE_STRING_TYPE)—The suffix type component of the street’s name

• SUFFIX (SE_STRING_TYPE)—The suffix direction component of the street’s
name

176 ArcSDE Configuration and Tuning Guide for Oracle

• ZIPL (SE_STRING_TYPE)—The ZIP Code on the left side of the street feature

• ZIPR (SE_STRING_TYPE)—The ZIP Code on the right side of the street feature

• Shape (SE_SHAPE_TYPE)—Contains the geometry for the feature class

Geocoding index table (GC_SZS<objectclass_id>)

When you create a locator that uses an ArcSDE feature class as reference data, the
locator style on which the locator is based may specify that a geocoding index table is
used when performing geocoding queries against the feature class. The locator style
defines the format of the name of the geocoding index table, as well as the contents. In
this example, a locator based on the US Streets with Zone locator style was created on
the STREETS feature class. Geocoding index tables created by locators based on this
style contain a Soundex value for the street name, as well as attributes for the zones on
each side of the street feature.

The size of the delta tables also depends on how often records are removed. These tables
shrink only when the states preceding the level 0 version are compressed. This occurs
only after a version branching directly off the root of the version tree completes and is
removed from the system. The compression of states that follows will cause the changes
of the states between the level 0 version and the next version following the one removed
to be written to the business table and deleted from the delta tables.

NAME DATA TYPE NULL?
SX VARCHAR2(4) NULL
XID NUMBER(38) NULL
LZONE VARCHAR2(5) NULL
RZONE VARCHAR2(4) NULL

 Geocoding index table

• SX (SE_STRING_TYPE)—The Soundex value for the street name

• XID (SE_INTEGER_TYPE)—A foreign key to the OBJECTID column in the
business table

• LZONE (SE_STRING_TYPE)—The zone on the left side of the street feature

• RZONE (SE_STRING_TYPE)—The zone on the right side of the street feature

Appendix F—Storing locators 177

SDE.LOCATORS table

When you add a locator to an ArcSDE database, ArcSDE adds a row to the
SDE.LOCATORS table. Each row in the SDE.LOCATORS table defines a locator or
locator style.

NAME DATA TYPE NULL?
Locator_id NUMBER(38) NOT NULL
Name VARCHAR2(32) NOT NULL
Owner VARCHAR2(32) NOT NULL
Category VARCHAR2(32) NOT NULL
Type NUMBER(38) NOT NULL
Description VARCHAR2(64) NULL

 SDE locators table

• locator_id (SE_INTEGER_TYPE)—The table’s primary key

• name (SE_STRING_TYPE)—The name of the locator

• owner (SE_STRING_TYPE)—The name of the ArcSDE user that owns the locator

• category (SE_STRING_TYPE)—The category of the locator; address locators have
a category value of “Address”

• type (SE_INTEGER_TYPE)—The type of locator; values in this column are
represented as follows:

o 0—Defines locator styles

o 1—Defines locators (that is, locators that can be used to find locations)

o 2—Defines attached locators (that is, locators that are attached to a geocoded
feature class and are a copy of the locator and the geocoding options that were
used to create the geocoded feature class)

• description (SE_STRING_TYPE)—The description of the locator

178 ArcSDE Configuration and Tuning Guide for Oracle

SDE.METADATA table

When you add a locator to an ArcSDE database, ArcSDE adds a row to the
SDE.METADATA table for each property of the locator. Each row in the
SDE.METADATA table defines a single property for a locator. The object_name
column is a foreign key to the name column in the SDE.LOCATORS table that ArcSDE
uses to associate a locator with its properties.

NAME DATA TYPE NULL?
record_id NUMBER(38) NOT NULL
object_name VARCHAR2(32) NOT NULL
object_owner VARCHAR2(32) NOT NULL
object_type NUMBER(38) NOT NULL
class_name VARCHAR2(32) NULL
property VARCHAR2(32) NULL
prop_value VARCHAR2(255) NULL
description VARCHAR2(65) NULL
creation_date DATE NOT NULL

 SDE metadata table

• record_id (SE_INTEGER_TYPE)—The table’s primary key

• object_name (SE_STRING_TYPE)—The name of the locator to which the property
belongs

• object_owner (SE_STRING_TYPE)—The name of the ArcSDE user that owns the
record

• object_type (SE_INTEGER_TYPE)—Always a value of 2 for locator properties

• class_name (SE_STRING_TYPE)—Always a value of “SDE_internal” for locator
properties

• property (SE_STRING_TYPE)—The name of the locator property

• prop_value (SE_STRING_TYPE)—The value of the locator property

• description (SE_STRING_TYPE)—Not used for locator properties

• creation_date (SE_DATE_TYPE)—The date and time at which the locator property
was created

Appendix F—Storing locators 179

SDE.GCDRULES table

The SDE.GCDRULES table stores the geocoding rules that are used by address locators
to match addresses. Each record in the SDE.GCDRULES table corresponds to a
geocoding rule file. For descriptions of each of the geocoding rule files and their
contents, see the Geocoding Rule Base Developer Guide in the ArcGIS documentation
set.

NAME DATA TYPE NULL?
ID NUMBER(9) NOT NULL
STYLE VARCHAR2(32) NULL
TYPE VARCHAR2(3) NULL
DATA BLOB or LONG RAW NULL

 Geocoding rules table

• ID (SE_INTEGER_TYPE)—The table’s primary key

• STYLE (SE_STRING_TYPE)—The name of the geocoding rule set

• TYPE (SE_STRING_TYPE)—The type of geocoding rule file

• DATA (SE_BLOB_TYPE)—The contents of the geocoding rule file

180 ArcSDE Configuration and Tuning Guide for Oracle

A P P E N D I X G

Making a direct connection

Direct connect is another configuration option for ArcSDE, and all the

ArcSDE concepts and prerequisites also apply to direct connect. The

main difference between the ArcSDE application server and direct

connect is where the ArcSDE processing takes place. The purpose of

this appendix is to provide information to administrators on how to set

up and configure direct connect configurations for the database as well

as client machines. If using the application server exclusively, you do

not need this appendix.

What files do you need?
There are two sets of ESRI-supplied files required for direct connect:

• Direct connect driver—These are dynamically linked libraries in the bin or lib
directory (depending on your operating system) of your client application that
provide the functionality to connect and use spatial data in a DBMS. There are
drivers for the following databases:

o IBM DB2

o IBM Informix

o Microsoft SQL Server

o Oracle8i and Oracle9i

These drivers are automatically installed for ArcGIS (the whole product suite),
ArcView GIS 3.x Database Access, ArcIMS, ArcInfo Workstation, and
MapObjects 2. If you are using a non-ESRI custom application built from the
ArcSDE C API, you may need to install the direct connect drivers from the

182 ArcSDE Configuration and Tuning Guide for Oracle

ArcSDE Developer Kit CD–ROM located in the ArcSDE media kit. Check with
the supplier of your non-ESRI custom application.

• Database setup files—These are files needed by an administrator to set up and
configure a DBMS for direct connect and include files such as sdesetup<dbms>.
The setup is exactly the same as it is for the ArcSDE application server. These
setup files are located on the platform CD–ROM of choice in the ArcSDE
media kit. To get them, you must install ArcSDE for your database. You do not
have to create an application server; you only need the files on disk, so you can
use them against your database.

DBMS considerations are as follows:

Oracle8i, Oracle9i
To facilitate network communication to an Oracle database, each client machine
where direct connect is used must have Oracle Net installed.

Microsoft SQL Server 7, Microsoft SQL Server 2000
SQL Server requires Microsoft® Data Access Components (MDAC).

If you intend to use ArcCatalog 9 or ArcView GIS 3.3 with Database Access 2.1f,
MDAC version 2.6 (SP1) or greater is required. If using ArcIMS 9 or ArcGIS 9 to
direct connect, you must have MDAC 2.6 or higher.

DB2
Each client machine must be configured for remote database access. Use the DB2
Configuration Assistant on the database host to connect to a remote database.

Informix
Each client machine where direct connect will be used must have the Informix Client
Software Development Kit (SDK) 2.8 or the Informix I-connect 2.8 application
installed. The client machine must also have the SetNet32 application installed,
which comes with both the Informix Client SDK 2.8 and the Informix I-connect 2.8
applications.

How to get your database setup files
You will need to get your database setup files from one of the CD–ROMs in the
ArcSDE media kit. The ArcSDE media kit has CD–ROMs by platform with the
exception of the ArcSDE Developer Kit CD–ROM. To get your database setup files,
you will need to install the software for the ArcSDE application server for your
database or platform. For example, if you are using IBM DB2 on a Sun Solaris
server, you will use the Sun Solaris CD–ROM from the ArcSDE media kit and

Appendix G—Making a direct connection 183

install the DB2 version of ArcSDE on your Sun Solaris server. Be sure to follow the
postinstallation configuration instructions in the database-specific install guide, but
ignore any instructions about creating the application server. You don’t need to do
that. Install guides are html files on each CD–ROM. Please read them carefully.

Why do I need to install the ArcSDE application server
software?

Installation of the ArcSDE application server is to get the database setup and
administration files only. If you are a direct connect only site, you do not need to
start an ArcSDE application server. All you need to do is install the ArcSDE files
and follow the postinstallation configuration instructions. The administration files
that are installed (for example, sdesetup<dbms>, sdeconfig, sdedbtune, sdelayer) are
useful for managing your connection parameters, dbtune table, and manual
registration or unregistration of third party layers. See Managing ArcSDE Services
and the ArcSDE Configuration and Tuning Guides for more information.

If you use both the application server and direct connect at your site, you already
have or soon will have ArcSDE setup and administration files installed anyway. It is
important to note that once your database is configured for use with the ArcSDE
application server, it is also ready for direct connect usage.

Environment variables
For each client machine, there are environment variables you must set. If necessary,
ask your Windows or UNIX system administrator to find out how to set environment
variables on your system.

The SDEHOME environment variable

You must set the SDEHOME variable to tell the client application:

• Where the direct connect driver files are stored. For ESRI client applications,
the direct connect files are located in the same directory where the client
application’s other dynamically linked library files are installed. For Windows
applications, this is normally in the bin directory of your client application’s
install location. For UNIX and Linux systems, these will normally be in the lib
directory.

To set this environment variable, you must specify the full file path for it. For
example:

184 ArcSDE Configuration and Tuning Guide for Oracle

UNIX: setenv SDEHOME /unix1/arcgis/

Windows: Use Windows utilities to set a variable to something similar to:

Variable: Value:
SDEHOME C:\Program Files\ArcGIS\

The direct connect process will look for the appropriate driver in the bin or lib
directories of the path specified.

You do not have to set the SDEHOME environment variable if the following are
true:

• Your users are using ESRI client applications built with the ArcSDE 9 C API.

• Your users are not using UNIX.

UNIX or Linux systems

1. Include $SDEHOME/lib in the library environment variable for your platform.

 If your database is an Oracle database, include $ORACLE_HOME/lib as well.

 For example:

 setenv LD_LIBRARY_PATH $SDEHOME/
 lib:$ORACLE_HOME/lib:/usr/ openwin/lib:/usr/lib

2. Add the bin directory to the system path.

 An example follows for the SDEHOME variable.

setenv PATH $JAVA_HOME/bin:$SDEHOME/
bin:$AEJHOME/bin:/usr/sbin:/usr/bin:/usr/local/
bin: /etc:/usr/ucb:/usr/dt/bin:/usr/bin/X11

3. If ArcIMS is your client application and Oracle is the database, append
$ORACLE_HOME/lib to the LD_LIBRARY_PATH variable in the
aimsappsrvr and aimsmonitor scripts, located in the $AIMSHOME/Xenv
directory.

 For example, where your LD_LIBRARY_PATH variable now reads:

LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/bin;
export LD_LIBRARY_PATH

 It should now be:

 LD_LIBRARY_PATH-$AIMSHOME/lib:$AIMSHOME/
 bin:$ORACLE_HOME/lib; export LD_LIBRARY_PATH

Appendix G—Making a direct connection 185

The etc directory

If an etc directory exists for the client application, it must be located in the directory
you specified for SDEHOME. If it isn’t located there, you must create it there. This
etc directory is where the log file of error messages will be stored by default.

The dbinit.sde file

This file is located in the etc directory of your SDEHOME. This file can be used to
set environment variables for direct connect use. It may be more convenient to set
environment variables for direct connect here than via system tools.

See Chapter 3 in Managing ArcSDE Application Servers for more information on
the dbinit.sde file.

Client/Database compatibility
Direct connect drivers are only compatible with a same vintage database configured
for ArcSDE. For example, you cannot direct connect from ArcMap 9 to a database
that is still at an 8.3 configuration. You would have to run the ArcSDE 9 setup
configuration on that 8.3 database to be able to use direct connect from the
ArcMap 9 client.

Registration and authorization
ArcSDE application servers and all direct connect configurations must be registered
before use. The end result of the registration process is an authorization file that is
used to enable the software for use. Please note that if you are upgrading an
existing ArcSDE instance, you may need new keycodes. Please refer to the ArcSDE
Installation Guide for details.

 Setting up clients for Oracle direct connect

Setting up the database

You must set up and configure each database that users will be directly connecting
to. Use standard Oracle tools and ArcSDE tools and documentation to:

• Install the application server.

• Perform postinstallation configuration.

186 ArcSDE Configuration and Tuning Guide for Oracle

When your database is configured for ArcSDE, you are ready to set up your client
machines.

Setting up the client machines

When you set up the client machines, you perform the following steps in order on
the client machine:

1. Use Oracle tools to install and configure Oracle Net to connect to an Oracle
instance with SQLPLUS.

2. Set environment variables.

3. Test the connection.

 Setting up Oracle Net

Oracle Net is required on each client machine you want to access your database
directly.

1. On each client machine for which you want to set up a direct connection, install
Oracle Net. See your Oracle documentation for instructions on Oracle Net
installation.

2. Test that Oracle Net was installed successfully. On the client machine, type the
following at a command prompt:

 sqlplus <user name>/<password>@<Oracle Net service name>

If you get the SQL> prompt, then the Net client is working and you are ready to go
to the next step. If you do not get the SQL prompt, then consult the Oracle
documentation’s troubleshooting information.

Setting environment variables

You must set the SDEHOME and other environment variables. Set SDEHOME to
point to the directory where the client application’s dynamically linked library files
are stored.

Connection syntax

There is a particular syntax to use when connecting with direct connect. For the
Service (or instance) value:

sde:oracle

Appendix G—Making a direct connection 187

where

sde:oracle

is a required part of the syntax for Oracle8i connections

For Oracle 9i connections, use the syntax:

sde:oracle9i

in order to use the appropriate driver file.

Your password will have the Oracle Net Service name appended to it:

mypassword@<Oracle Net Service name>

You can also use the following syntax in place of adding the @<Oracle Net Sevice
name> to your password:

sde:oracle:/;LOCAL=<sqlnetalias>

For UNIX this will be:

"sde:oracle:/;LOCAL=<sqlnetalias>"

(double quotes are required for UNIX).

Testing the connection from the client application

Test the connection from the client application you set up for direct connect.

188 ArcSDE Configuration and Tuning Guide for Oracle

A P P E N D I X H

Storing XML data

ArcIMS relies on the capabilities of ArcSDE and a relational database to

store, search for, retrieve, and index metadata documents. Whenever

ArcIMS receives a request to perform an operation, such as finding a

metadata document or publishing a new document, ArcSDE translates

the request into SQL and sends it to the database. The result of the

operation is passed back from the database and out through ArcIMS. For

example, the result might list the metadata documents that matched the

search criteria or indicate the success or failure of publishing a document.

The database is a critical component of a Metadata Service. As the

database administrator, you must ensure the database is configured

properly to support text indexing before a Metadata Service can be

started. You also have some control over how the Metadata Service’s

tables are stored in the database and how documents published to the

Metadata Service are indexed. There are additional ArcSDE

configuration and maintenance topics in this appendix to be aware of in

connection with ArcIMS Metadata Services.

An ArcSDE XML column is used to store metadata documents that are

published to a Metadata Service. ArcSDE XML columns are supported

with Oracle, SQL Server, and DB2 databases and require text indexing

functionality to be installed and configured in those databases. ArcSDE

190 ArcSDE Configuration and Tuning Guide for Oracle

XML columns, and therefore ArcIMS Metadata Services, are not

supported with Informix databases.

Configuring ArcSDE for Oracle
ArcSDE XML columns require Oracle Text for Oracle10g™ and Oracle9i™ or
InterMedia Text for Oracle8i™ to be installed. Once this is accomplished, the database
and ArcSDE must be properly configured and maintained for optimal search
performance.

XML documents are stored in the database as an Oracle Large Object (LOB). The LOB
storage and caching parameters, the table space’s block size, and the buffer cache
configuration all affect the speed at which LOB data is retrieved, which in turn affects
performance when searching. It is also important to manage the text indexes properly to
maintain good performance.

Installing Oracle’s text component

The database administrator must accomplish steps 1 and 2 below before an XML
column, and therefore an ArcIMS Metadata Service, can be created.

Step 1: Install the text component.

1. Follow the instructions in the Oracle documentation to install the appropriate text
component for your version of the database.

Oracle Text is installed by default with a typical installation of Oracle10g and Oracle9i.
However, if you upgraded an earlier version of the database where the text component
was not installed, Oracle Text may not be installed as part of the upgrade; if this is the
case, it must be installed as an additional component after the upgrade is completed.

2. Follow the instructions in the Oracle documentation to verify the text component
has been installed and is working properly.

Step 2: Grant privileges for the XML column.

After logging in to SQL*Plus as the ctxsys user, you must grant privileges to the user
who will own the XML column by issuing the command

sql>grant execute on ctx_ddl to <mdUsername>;

Appendix H—Storing XML data 191

where <mdUsername> is the user who will own the column. For ArcIMS Metadata
Services, <mdUsername> is the user specified in the service’s ArcXML configuration
file.

Configuring LOB storage

XML documents are stored in BLOB format in the XML document table in the xml_doc
and xml_doc_val columns. It is important to configure these columns accurately to
achieve the best possible search performance.

Using inline or out of line storage

LOBs are stored inline if the LOB data is stored in the same block as the rest of the data
in the row. However, inline storage is only possible if the LOB data is less than 4KB in
size. With out of line storage, the data is stored in the LOB segment, and only the LOB
locator is stored with the rest of the data in the row.

By default, Oracle stores LOB data inline. You can specify whether LOB data associated
with an XML column is stored inline or out of line using the ArcSDE DBTUNE
parameters XML_DOC_LOB_STORAGE and XML_DOC_VAL_LOB_STORAGE.

When LOB data is stored out of line for an XML column, by default ArcSDE places that
data in the same table space as the XML document table. The LOB data may be moved
to a different table space than the one containing the XML document table by using the
XML DBTUNE parameters XML_DOC_STORAGE and the
XML_DOC_VAL_STORAGE.

A typical XML document that contains metadata describing a GIS resource will be
greater than 4KB in size. Tests show XML columns associated with ArcIMS Metadata
Services perform best when the LOB data is stored out of line in a separate table space
from the XML document table. Specify out of line storage for the XML column by
setting the XML_DOC_LOB_STORAGE and XML_DOC_VAL_LOB_STORAGE
parameters to DISABLE STORAGE IN ROW. And, after configuring another table
space to store the LOB data, specify that table space’s name in the
XML_DOC_STORAGE and the XML_DOC_VAL_STORAGE parameters. For XML
columns associated with ArcIMS Metadata Services, set these parameters with the
DEFAULTS DBTUNE keyword.

A Metadata Service may contain gazetteer data instead of typical metadata XML
documents. Gazetteer data is very small, typically less than 100 bytes in size. Metadata
Services containing gazetteer data will perform best when the LOB data is stored inline.
Default gazetteer data is provided with ArcIMS in sdeexport format and is loaded into
ArcSDE using a batch script that calls the sdeimport command. This script references

192 ArcSDE Configuration and Tuning Guide for Oracle

the DBTUNE keyword GAZETTEER, which does not specify “DISABLE STORAGE
IN ROW” for the XML_DOC_LOB_STORAGE and
XML_DOC_VAL_LOB_STORAGE parameters; Oracle’s default behavior will be used
to store LO B data inline.

For more information about inline and out of line storage, see Oracle’s LOB
Performance Guidelines white paper dated May 2004. It is available from Oracle’s Web
site.

LOB caching and logging

LOB data may be read and written using the buffer cache. When the LOB data isn’t
accessed using the buffer cache, it is read and written by directly accessing the data each
time. Caching can improve search performance for XML columns where LOB data is
stored out of line, particularly for frequently accessed LOBs. By default, Oracle will not
cache LOB data that is stored out of line.

If logging is specified, changes to out of line LOB data will be added to the redo logs.
Logging is enabled when LOB data is cached. This may decrease performance for
publishing XML documents.

With ArcSDE XML columns, LOB data will initially be stored as NOCACHE
NOLOGGING. However, XML columns that store LOB data out of line should be set to
CACHE LOGGING to optimize search performance. For XML columns associated
with an ArcIMS Metadata Service, both LOB columns in the XML document table will
be set to CACHE LOGGING when the aimsmetaindx command is run.

The caching and logging properties will not affect LOB data that is stored inline such as
with XML columns that contain gazetteer data.

For more information about caching and logging, see Oracle’s LOB Performance
Guidelines white paper dated May 2004. It is available from Oracle’s Web site.

Table space block size and buffer cache configuration

When out of line LOB data is not present in the buffer cache, the block size can affect
the amount of time required to read data from disk. You can improve search
performance against an XML column if you know the data’s distribution and you set the
table space and buffer cache to use the correct block size.

For example, if most of the LOB data is less than 8KB in size and the table space block
size is 16KB, more time will be spent reading data from the disk than necessary. In this
situation, you would improve performance if you used Oracle’s multi-block-size

Appendix H—Storing XML data 193

configuration, storing the out of line LOB data in a table space that was set to use 8KB
blocks.

Setting the table space block size must be done in combination with allocating memory
for the buffer cache. The size of the buffer cache depends on the block size of the table
space used to store the out of line LOB data. If the table space uses an 8KB block size,
memory must be allocated for an 8KB buffer cache. You must ensure that enough
system memory has been allocated to support the cache.

Oracle uses a table space block size of 16KB by default. Initially, you should use a table
space with the default block size and buffer cache settings to store out of line LOB data.
Then, once XML documents have been published to the XML column, you can analyze
the distribution of that data using the xml_lob_block_distribution script that is available
in the %SDEHOME%\sdeexe\tools directory.

ESRI tests show that typical metadata XML documents published to an XML column
will be less than 8KB in size. To optimize search performance for this type of XML
column, you can take advantage of Oracle’s multiblock-size configuration to store the
out of line LOB data in a table space with an 8KB block size, while other table spaces
can continue storing data in 16KB blocks. First, the Oracle instance must be configured
to allow a block size of 8KB, then you can create a new table space that uses the 8KB
block size and 8KB buffer cache to store the out of line LOB data. Modify the ArcSDE
DBTUNE XML_DOC_STORAGE and XML_DOC_VAL_STORAGE parameters to
use the new table space and create a new XML column using those parameters. Finally,
republish your XML documents to the new XML column.

Ideally, all out of line LOB data blocks would be stored in the buffer cache to optimize
search performance. You can use the xml_lob_cache_size script in the
%SDEHOME%\sdeexe\tools directory to estimate the cache size required to store all the
LOB blocks. Before running this script, change the block_size variable at the beginning
of the script to the actual block size for the table space storing the LOB data. Depending
on available physical memory, you could adjust the buffer cache to ensure that as many
LOB data blocks will be stored in the buffer cache as possible.

See the Oracle documentation for more information about the table space db_block_size
parameter and the buffer cache.

Set the optimizer parameters for Oracle9i and Oracle8i

For Oracle9i and Oracle8i, a few optimizer parameters should be set in the database for
searches to perform well. Setting these parameters will not adversely affect other client
software that accesses your ArcSDE database. You do not need to set these parameters
for Oracle10g.

194 ArcSDE Configuration and Tuning Guide for Oracle

Oracle9i

For Oracle9i, the following parameter must be added to your Oracle server’s init.ora file:

OPTIMIZER_MODE=CHOOSE

Only the optimizer mode must be set; the other parameters used with Oracle8i aren’t
required.

Oracle8i

For Oracle8i, the following parameters must be added to your Oracle server’s init.ora
file:

OPTIMIZER_INDEX_CACHING = 90
OPTIMIZER_INDEX_COST_ADJ = 10
OPTIMIZER_MODE=CHOOSE

Refer to the Oracle8i documentation for a complete discussion of these parameters. In
general, setting these parameters as specified directs the Oracle8i optimizer to favor
index scans and nested loop execution plans over a full table scan or a sort merge.

Set the language of the lexer used to index text

If your XML column will store documents written in a language other than English, you
may need to set the XML_IDX_INDEX_TEXT parameter in the SDE_dbtune table.
With Oracle's text component, the lexer is used to split the original text into the words
that will be indexed. If the content of the XML documents is written in English and you
are using an English version of Oracle, you do not need to set this parameter for the text
to be indexed correctly. Similarly, if you are using a localized version of Oracle such as
a Japanese version of Oracle and the content of your documents is written in Japanese,
the default lexer will be set to Japanese and you should not have to change the value of
the XML_IDX_INDEX_TEXT parameter.

However, if you are using an international English version of Oracle and the language of
your documents is not English, you will need to use the XML_IDX_INDEX_TEXT
parameter to set Oracle’s text component to use the appropriate lexer for your language.
First, the user who owns the XML column must create a lexer preference in Oracle that
specifies which lexer to use. For example, if your XML documents are written in
Traditional Chinese, you would use the lexer "Chinese_lexer". After logging in to
SQL*Plus as the user who owns the XML column, you must create a lexer preference
by issuing the create preference command. For example, for Traditional Chinese:

sql>exec ctx_ddl.create_preference(‘myChLex’,‘chinese_lexer’);

Appendix H—Storing XML data 195

Then, in the SDE_dbtune table you would reference your lexer preferences by setting
the XML_IDX_INDEX_TEXT parameter to "lexer myChLex". If this DBTUNE
parameter is not set properly, the text in the XML documents will not be indexed
properly and you will have trouble finding documents with a search.

See the Oracle documentation for more information about the lexers used by the text
components.

Modifying the ArcSDE MAXBLOBSIZE parameter for ArcIMS
Metadata Services

XML documents that contain metadata describing GIS resources may contain an image
or a reference to an image that illustrates the contents of the resource. When these XML
documents are published to an ArcIMS Metadata Service, a copy of the image is stored
in a BLOB column in the feature class associated with the service.

For metadata XML documents created using ArcCatalog, a small thumbnail image may
be embedded within the XML document. There should be no trouble publishing XML
documents containing these thumbnail images to a Metadata Service with the default
MAXBLOBSIZE setting for ArcSDE.

When a metadata XML document is published to a Metadata Service using ArcCatalog
and a thumbnail is not embedded within the document, the document’s content is
checked to see if there is a reference to an external image file. Specifically, the FGDC
metadata element Browse Graphic File Name is checked. If a file path or HTTP address
is found that references a JPEG image and ArcCatalog can access the image, the file will
be loaded into the Metadata Service as the document’s thumbnail. ArcCatalog will only
attempt to access the first JPEG image referenced in the metadata.

External image files referenced by a metadata document may be large. If the file is larger
than approximately one megabyte in size, publishing the document to the Metadata
Service may fail. You must adjust the default value of the MAXBLOBSIZE parameter
in ArcSDE if you want to support publishing larger images as thumbnails.

The MAXBLOBSIZE parameter can be found in the giomgr.defs file located in the etc
directory of your ArcSDE installation. For information on how to adjust this parameter,
see the section on managing BLOB data in Chapter 3 of Managing ArcSDE Application
Servers. This document can be found in your %SDEHOME% directory. You may also
want to refer to Appendix D, “ArcSDE initialization parameters,” in the same guide.

196 ArcSDE Configuration and Tuning Guide for Oracle

Text index synchronization and optimization

An ArcSDE XML column can have two text indexes to support different types of
searches: a text index associated with the XML document table, which supports full text
searches against all content in all XML documents, or a text index associated with the
XML index table that supports searches against specific XPaths in the XML documents.
For example, you might search only the content of an XML element containing scale
information to find GIS resources that are appropriate for your application.

Both text indexes associated with an ArcSDE XML column are CONTEXT indexes,
which are designed for indexing articles, reports, and similar documents such as
metadata describing GIS resources. It is important to manage these indexes appropriately
as new documents are published to the XML column to maintain good search
performance. This involves synchronizing and optimizing the text indexes.

Synchronization

Text indexes are nontransactional in nature. As new documents are published, rows are
added to the XML document table and the XML index table as appropriate. Content in
the new rows will not be added automatically to the text indexes. The text indexes must
be explicitly synchronized to index the new content; this is accomplished using the
ctx_ddl.sync_index function. Until synchronization occurs, no documents published
since the last synchronization will be found by full text or XPath searches.

For XML columns associated with an ArcIMS Metadata Service, both text indexes
associated with the ArcSDE XML column will be synchronized when the aimsmetaindx
command is run after publishing new docs. To learn more about the aimsmetaindx
command, see Chapter 3, “Creating Metadata Services” in Creating and Using
Metadata Services, a document that is included with your installation of ArcIMS.

Index fragmentation

CONTEXT indexes are inverted, meaning each indexed word is associated with the list
of documents containing that word. When CONTEXT text indexes are frequently
synchronized, they can become fragmented, which eventually affects the performance of
searches using indexes. For example, after publishing a number of XML documents and
synchronizing the index for the first time, the word “river” might have an entry as
follows:

RIVER DOC1 DOC3 DOC5

Each time the index is synchronized after adding new documents, rows are added for
words that were indexed in the new documents. Suppose the next three times the index
was synchronized, one document was found to contain the word “river” each time. The
index would become fragmented, like this

Appendix H—Storing XML data 197

RIVER DOC1 DOC3 DOC5
RIVER DOC9
RIVER DOC11
RIVER DOC15

Synchronizing less frequently will result in longer document lists, reducing the number
of rows in the index and, hence, reducing fragmentation.

As an example, ArcIMS Metadata Services support a configuration option for which the
text indexes will be synchronized each time an XML document is published; this is
accomplished by setting the index_words option to “automatic” in the service’s
ArcXML configuration file. This option will produce highly fragmented text indexes for
the text indexes associated with the service’s XML column. It would be preferable to set
the index_words option to “manual” and synchronize the index at a more appropriate
interval such as every night. For example, this could be accomplished by scheduling a
cron job to run the ArcIMS aimsmetaindx command. See the Oracle documentation for
information about scheduling processes such as updating text indexes.

Optimization

Regardless of how often the text indexes are synchronized, some fragmentation of the
text index is unavoidable because of how the index is updated. You should periodically
optimize CONTEXT text indexes to minimize fragmentation and index size and
therefore improve search performance.

For XML columns associated with large Metadata Services that provide a central
repository of regional information, you might optimize the index each night after
synchronizing the indexes to maintain the best possible search performance. For XML
columns containing a smaller number of documents, you may want to optimize the
index weekly or monthly depending on how often new documents are published and the
text indexes are synchronized.

Note: Text indexes for all XML columns should be optimized when the number of
XML documents published to the XML column has increased by approximately 20
percent since the last time optimization occurred.

An XML column’s text indexes can be optimized using the sdexml command with the
optimize option. For example,

sdexml -o optimize -l aTable,XML -i 5151 -s oracleServer -u aUser -p
aPassword

For XML columns associated with an ArcIMS Metadata Service, text indexes associated
with the ArcSDE XML column can be optimized by running the aimsmetaindx
command with the indexAll option. To learn more about the aimsmetaindx command,
see Chapter 3, “Creating Metadata Services,” of Creating and Using Metadata Services.

198 ArcSDE Configuration and Tuning Guide for Oracle

With either optimization method, you can continue to search the contents of the XML
column while optimization takes place.

For more information about Oracle text indexes, refer to the Oracle Text Application
Developers Guide.

Updating database statistics for a Metadata Service’s tables

Over time, as people publish documents to, update documents in, and delete documents
from a Metadata Service, the statistics in the database for the service’s objects will
become stale. When this happens, performance may decline for searches that use criteria
that are evaluated against data in the Metadata Service’s tables rather than the XML
column’s indexes. These criteria include the UPDATED, AREA, DOCUMENTINFO,
and SUBSET ArcXML requests.

To keep your Metadata Service operating at peak performance, you should periodically
update the statistics for the business table associated with the Metadata Service’s feature
class and the relationships table. You should do this whenever approximately 20 percent
of the records in the Metadata Service have changed as a result of adding, updating, or
deleting documents.

Update statistics using the ArcSDE sdetable command from the operating system’s
command line. For Oracle you would execute this command as follows:

sdetable -o update_dbms_stats -t <table_name> -m compute -i <service> -s
<server_name> -u <DB_User_name> -p <DB_User_password>

Run the above command twice, once for the feature class and once for the relationships
table. For the feature class, set the <table_name> argument to the table name prefix
defined in the Metadata Service’s ArcXML configuration file such as “imsmetadata.”
For the relationships table, set the <table_name> argument to <prefix>R, such as
“imsmetadatar” if the table name prefix is “imsmetadata.” Modify the remaining
arguments to provide the appropriate ArcSDE connection information.

For more information about the sdetable command, see the Administrative Command
References located in the documentation folder in %SDEHOME%, or

from support.esri.com, click Software > ArcSDE > ArcSDE Developer Help >
Administrative Command References.

ArcSDE XML columns database schema
Three ArcSDE system tables are used to manage XML columns: XML columns, XML
index tags, and XML indexes. These tables are owned by the SDE user. ArcSDE also

Appendix H—Storing XML data 199

creates two additional tables for each XML column that are used to store and index
XML documents: the XML document and XML XPath index tables. These tables are
owned by the user who owns the business table containing the XML column.

An example of the ArcSDE XML columns database schema is shown on the next page.

200 ArcSDE Configuration and Tuning Guide for Oracle

When an XML column is added to an object, the column is recorded in ArcSDE XML columns table. Information in this table is

used to create the XML document and index tables and to record information about their text indexes in the ArcSDE XML

indexes and index tags tables.

Appendix H—Storing XML data 201

XML columns table (SDE_xml_columns)

When you add an XML column to a business table, a row is added to the XML columns
table. This table occurs once in each ArcSDE database.

The table’s columns are described below. The ArcSDE data type follows the column’s
name.

Column_id (SE_INT32)—The XML column’s identifier and the table’s primary key.
This value is assigned by ArcSDE at the time the XML column is created.

Column_name (SE_STRING)—The name of the XML column in the business table.

Config_keyword (SE_STRING)—The DBTUNE configuration keyword containing
parameters that determine how the XML document and the XML XPath index tables
and text indexes created on those tables are defined in the database. For more
information on DBTUNE keywords and their parameters, see the ArcSDE configuration
and Metadata Service DBTUNE sections in Appendix B of Creating and Using
Metadata Services. Also, review the chapter “Configuring DBTUNE storage
parameters” in this document.

Index_id (SE_INT32)—The identifier of the XPath index associated with the XML
column, if one exists. A foreign key to the XML indexes table.

Minimum_id (SE_INT32)—The value of the initial number used in the business table’s
XML column to identify individual XML documents.

Registration_id (SE_INT32)—The identifier of the business table containing the XML
column. A foreign key to the ArcSDE table registry.

Xflags (SE_INT32)—A value indicating whether the original documents in the XML
document table are stored compressed or uncompressed. By default, documents are
compressed; compressed documents provide better performance.

XML indexes table (SDE_xml_indexes)

This table occurs once in each ArcSDE database. It contains one row for each XML
column that has an XPath index.

Description (SE_STRING)—Text identifying the XPath index. If an index definition
file was used to create the index, the index’s description may be specified at the top of
the file.

202 ArcSDE Configuration and Tuning Guide for Oracle

Index_id (SE_INT32)—The identifier of the XPath index. The table’s primary key.

Index_name (SE_STRING)—The name of the XPath index. For XPath indexes
associated with an ArcIMS Metadata Service, the name will be “ims_xml#” where # is
the identifier of the XML column in the Metadata Service’s business table.

Index_type (SE_INT32)—A value indicating the type of XPath index. With ArcSDE
9.1 the value will be two for the index type SE_XML_INDEX_DEFINITION and one
for the index type SE_XML_INDEX_TEMPLATE. For XPath indexes associated with
an ArcIMS Metadata Service, only the index type SE_XML_INDEX_DEFINITION is
supported.

Owner (SE_STRING)—The database user who owns the XML column. For ArcIMS
Metadata Services, this is the user specified in the service’s ArcXML configuration file.

XML index tags table (SDE_xml_index_tags)

An XML column may optionally have an XPath index, which lets people search the
content of a specific XML element or attribute in each document. The definition of
which elements and attributes are included in or excluded from each XPath index is
recorded in this table.

This table occurs once in each ArcSDE database. It contains one row for each XPath
associated with an XML column’s XPath index.

Data_type (SE_INT32)—A value indicating whether the XML element or attribute will
be indexed as a string or a number. A one indicates the content of the tag will be indexed
as text; a two indicates the content will be indexed as a number.

Description (SE_STRING)—Text identifying the content that should be contained in
the XML element or attribute.

Index_id (SE_INT32)—The identifier of the XPath index associated with an XML
column, if one exists. A foreign key to the XML indexes table.

Is_excluded (SE_INT32)—A value indicating whether the XML element is included in
or excluded from the XPath index. A zero indicates the XPath is included; a one
indicates the XPath is excluded.

Tag_alias (SE_INT32)—A number that may be used to identify an XPath. For example,
the Z39.50 communication protocol uses numeric codes to refer to content that may be
searched. This column is not used by the ArcIMS Z39.50 Connector.

Appendix H—Storing XML data 203

Tag_id (SE_INT32)—The identifier of an XPath or tag.

Tag_name (SE_STRING)—An absolute XPath identifying an XML element or
attribute that may occur in an XML document. For example, /metadata/mdDateSt
identifies an XML element, and /metadata/dataIdInfo/tpCat/TopicCatCd/@value
identifies an XML attribute. These XPaths must not contain asterisks (*) to refer to a
group of XML elements or attributes—each element or attribute is matched exactly
using the XPaths specified in this table.

XML document table (sde_xml_doc<column_id>)

The ArcSDE database contains one of these tables for each XML column. The number
in the table name is the XML column’s identifier. This table contains one row for each
XML document stored in the XML column.

Doc_property (SE_INT32)—A value indicating whether or not any conflicts were
found when adding the content of an XML document to the XPath index. A value of one
indicates a conflict was found, for example, when an element is supposed to be indexed
numerically but the document contains a string in that element instead. A NULL value
indicates there were no problems indexing the document.

Sde_time_stamp* (SE_INT32)—For SQL Server only. This column contains a time
stamp that is used to support incremental updates to the text index.

Sde_xml_id (SE_INT32)—The identifier for an XML document stored in the XML
column. The primary key for the table.

Xml_doc (SE_BLOB)—The XML document.

Xml_doc_val (SE_BLOB)—The content of the entire XML document, with all XML
tags removed. A text index is built on this column by default; this index is used to
respond to full text queries. For ArcIMS Metadata Services, this index is used to respond
to FULLTEXT requests.

XML XPath index table (sde_xml_idx<column_id>)

The ArcSDE database contains one of these tables for each XML column that has an
XPath index. The number in the table name is the XML column’s identifier. This table
contains one row for each XML element or attribute in each document that is included in
the XPath index.

Double_tag (SE_FLOAT64)—For XPaths that are indexed numerically, the number
contained in the element or attribute. For XPaths that are indexed as text this column will

204 ArcSDE Configuration and Tuning Guide for Oracle

contain a NULL value. For ArcIMS Metadata Services, this column is used to respond
to TAGVALUE requests.

Sde_time_stamp* (SE_INT32)—For SQL Server only. This column contains a time
stamp that is used to support incremental updates to the text index.

Sde_xml_id (SE_INT32)—The XML document’s identifier and a foreign key to the
XML document table.

Tag_id (SE_INT32)—The identifier for the XML element or attribute that is indexed.
This number corresponds to the value in the tag_id column in the XML index tags table.

Text_tag (SE_CLOB)—For XML elements or attributes that are indexed as string, the
text contained in the element or attribute. For XPaths that are indexed numerically this
column will contain a NULL value. A text index may optionally be built on this column;
this index is used to respond to XPath queries. For ArcIMS Metadata Services, this
index is used to respond to TAGTEXT requests.

Xml_key_column (SE_INT32)—The primary key for the table.

Index

adds table
sizing of, 116

American National Standards
Institute, 100

ANSI, 100
ArcCatalog, 25, 27, 33, 82, 83,

87, 92, 93, 126, 127, 152
ArcGIS Desktop, 82, 99
ArcIMS Metadata Service

creating, 190
LOB storage, 191
statistics, 197
text indexes, 195
XML doc, 191

ArcInfo, 83
ArcInfo Workstation, 82
ArcMap, 142
ArcSDE

XML columns, 190
ArcSDE CAD Client, 82
ArcSDE compressed binary

storage format, 17, 33
storing geometry in, 2, 53, 55

ArcSDE export file, 11
ArcStorm libraries, 86
ArcToolbox, 27, 83, 87, 90
ArcView 3.2, 82
backup and recovery, 4
Big Endian, 163
BLOB, 84, 137
business table

sizing of, 113
clients

tuning the spatial index for,
143

commit interval, 11
configuration keyword, 2, 83

DEFAULTS, 11
cov2sde, 81, 85
coverage, 11, 86
data block buffers, 18
datafile size, 15
dbtune configuration keyword

DATA_DICTIONARY, 13,
18, 48

DEFAULTS, 47
GEOMETRY_STORAGE,

53, 55, 90
LOGFILE_DEFAULTS, 57
NETWORK_DEFAULTS, 63

DBTUNE storage parameters, 36
A_INDEX_ROWID, 43
A_INDEX_SHAPE, 43
A_INDEX_STATEID, 43
A_INDEX_USER, 44
A_STORAGE, 43
AUX_INDEX_COMPOSITE,

46
AUX_STORAGE, 46
B_INDEX_ROWID, 42
B_INDEX_SHAPE, 42, 43
B_INDEX_USER, 14
B_STORAGE, 14
BLK_INDEX_COMPOSITE,

46
BLK_STORAGE, 46

BND_INDEX_COMPOSITE,
45

BND_INDEX_ID, 45
BND_STORAGE, 45
COMMENT, 57
COMPRESS_ROLLBACK_

SEGMENT, 11, 56
D_INDEX_DELETED_AT,

44
D_INDEX_STATE_ROWID,

44
D_STORAGE, 44
F_INDEX_AREA, 45
F_INDEX_FID, 44
F_INDEX_LEN, 45
F_STORAGE, 44
GEOMETRY_STORAGE,

138, 146
RAS_INDEX_ID, 45
RAS_STORAGE, 45
S_INDEX_ALL, 45
S_INDEX_SP_FID, 45
S_STORAGE, 45
SDO_SRID, 153
SDO_VERIFY, 66
UI_NETWORK_TEXT, 57

DBTUNE table, 2, 36, 86
dbtune.sde, 27, 37, 58
declining resolution pyramid,

127
deletes table

sizing of, 116
feature class, 11

206 ArcSDE Configuration and Tuning Guide for Oracle

creating, 28
feature table, 142

sizing of, 114, 172
GIF, 125
giomgr.defs parameters

AUTOCOMMIT, 11, 12
Graphics Interchange Format,

125
grids

defined, 140
determining the number of

levels, 143
examples, 144
levels, 140
size impact on spatial queries,

142
use in rebuilding spatial

index, 141
using sdelayer to determine

optimum size, 144
indexes

sizing of, 123
init.ora, 28
Joint Photographic Experts

Group, 125
JPEG, 125
layers

design for faster spatial
queries, 144

grid levels on, 140
statistics for grid cell size,

144
lexer, 194, See setting language
LIBRARIAN libraries, 86
listing

spatial index statistics, 144
Little Endian, 163
load-only I/O mode, 87
load-only mode, 84
LONG RAW, 84, 137
MapObjects, 82

multipolygons, 169
multiversioned, 85
MVTABLES_MODIFIED table,

13
national language support, 3
NDR, 163

converting to XDR, 164
network tables

sizing of, 117, 177
normal I/O mode, 87
normal_io, 84
ODBC, 163
OLTP, 7, 13
OnLine Transaction Processing,

7, 13
OpenGIS, 150
Oracle

ALTER SYSTEM
CHECKPOINT, 8

ANALYZE statement, 34
archiving, 8
buffer cache, 30
control files, 6
CREATE INDEX statement,

41
CREATE TABLE statement,

41
data block, 127
database backup, 103
database creation, 17
database files, 6
database recovery, 103
DEFAULT_TABLESPACE,

68
disk I/O contention, 6, 12, 15
granting privileges, 22
GROUP BY clause, 12
memory, 28
NLS_LANG, 99
online redo log files, 7, 8, 16,

105

online redo modifying, 9
ORDER BY clause, 12
Redo log buffer, 29
rollback segment, 11, 16
SGA, 28, 30
shared pool, 29
sort area, 12, 31
System Global Area, 28, 30
USER_TABLESPACES, 68

Oracle database
recovering, 112

Oracle datafiles
rollback segment, 16

Oracle init.ora parameters
ARCHIVELOG, 107
CONTROL_FILE_RECORD

KEEP TIME, 7
DB_BLOCK_BUFFERS, 30
LOG_ARCHIVE_DEST, 106
LOG_ARCHIVE_START,

106
LOG_BUFFER, 29, 30
NOARCHIVELOG, 107
OPTIMIZER_MODE, 32
PRE_PAGE_SGA, 31
SHARED_POOL_SIZE, 30

Oracle instance, 1
Oracle sde user

creating, 18
Oracle Spatial

coordinate dimension, 153
coordinate reference, 153
fixed index, 152
hybrid index, 152
hybrid quadtree index, 150
measures, 161
quadtree fixed index, 150
R-tree index, 150, 152
SDO_FILTER function, 156
SDO_GEOMETRY, 149
SDO_GYTPE, 154

Index 207

SDO_POINT, 155
SDO_SRID, 154
SDO_VALIDATE function,

159
SE_CAD column, 155
SE_SHAPE, 154
SRID, 151

Oracle spatial object
storing geometry in, 3, 54, 55

Oracle stored procedures
DBMS_LOCK, 20
DBMS_PIPE, 20

Oracle tablespaces
ArcSDE system, 13
business and index, 14, 18
INDX, 14, 18
rollback, 11
system, 11, 24
temporary, 12, 34
USER, 14, 18

original equipment
manufacturer, 100

performance
guidelines for faster spatial

queries, 143
physical RAM, 30
polygons, 169
privileges

granting, 85
PROCESS_INFORMATION

table, 20
raster band auxiliary table, 134
raster band table, 132
raster bands, 125
raster blocks table, 134
raster columns, 87, 125

creating, 28
raster data tables

sizing of, 120
raster table, 131

RASTER_COLUMNS table,
129

read-only databases, 8
rings, 169
SDE

spatial query process, 142
SDE_EXCEPTIONS, 148
SDE_LOGFILE_DATA, 58
SDE_LOGFILES, 58
sde2cov, 88
sde2shp, 88
sde2tbl, 88
SDEBINARY, 53, 55, 138, 146
sdedbtune, 2, 39
sdeexport, 88
sdegroup, 81
SDEHOME, 18
sdeimport, 81, 85, 86
sdelayer, 25, 81, 83, 85, 157

spatial index operations, 143
SDELOB, 54, 55, 138
sdetable, 81, 83, 88, 161
sdeversion, 56
SE_stream_set_spatial_constrain

ts, 142
server manager

managing the spatial index,
141

setting language. See lexer
shapefile, 11
shapes

editing impact on the spatial
index, 141

grid levels and, 141
shared memory, 28
shp2sde, 81, 84, 85, 86
shpinfo, 86
spatial index table, 17, 140, 142

sizing of, 115, 174
spatial indexes

building by SDE, 141
examples, 144
listing statistics about, 144
load-only mode and, 141
rebuilding process after

editing, 141
tuning for performance, 143

spatial queries
process in SDE, 142
spatial index and, 142

SPATIAL_REFERENCES table,
154, 158

STATES table, 13
STATES_LINEAGE table, 13
storage parameters, 2
tables

creating, 28
tagged image file format, 125
task manager, 28
tbl2sde, 81
text component, 190
TIFF, 125
US7ASCII, 99
version delta tables

sizing of, 116, 176
VERSIONS table, 13
virtual memory, 29
vmstat, 28
well known binary

representation, 163
XDR, 163

converting to NDR, 164
XML columns, in ArcSDE, 190
XML database schema, 198

columns table, 200
document table, 202
indexes table, 200
XPath index, 202

	ArcSDE Configuration and Tuning Guide for Oracle
	Chapter 1: Getting started
	Tuning and configuring the Oracle instance
	Arranging your data
	Creating spatial data in an Oracle database
	ArcSDE geodatabase maintenance
	National language support
	Backup and recovery

	Chapter 2: Essential Oracle configuring and tuning
	How much time should you spend tuning?
	Reducing disk I/O contention
	Setting the Oracle initialization parameters
	Enabling the optional Oracle startup trigger
	Updating Oracle statistics
	Updating ArcSDE compressed binary statistics

	Chapter 3: Configuring DBTUNE storage parameters
	The DBTUNE table
	Managing the DBTUNE table
	Using the DBTUNE table
	Defining the storage parameters
	Arranging storage parameters by keyword
	Oracle Spatial DBTUNE storage parameters
	Oracle default parameters
	Converting previous versions of SDE storage parameters into the DBTUNE table
	The complete list of ArcSDE 9 storage parameters

	Chapter 4: Managing tables, feature classes, and raster columns
	Data creation
	Creating and populating raster columns
	Creating views
	Exporting data
	Schema modification
	Choosing an ArcSDE log file configuration
	Using the ArcGIS Desktop applications
	Efficiently registering large business tables with ArcSDE

	Chapter 5: National language support
	Oracle database character sets
	Setting the NLS_LANG variable on the client
	Setting the NLS_LANG for the ArcSDE server

	Chapter 6: Backup and recovery
	Recording database changes
	Database backup
	Database recovery

	Appendix A: Estimating the size of your tables and indexes
	The business table
	The feature table
	The spatial index table
	The version delta tables
	The network tables
	The raster data tables
	The indexes

	Appendix B: Storing raster data
	Raster schema

	Appendix C: ArcSDE compressed binary
	Compressed binary
	The spatial grid index
	Creating tables with compressed binary schema
	Tuning LOB storage
	Referential integrity

	Appendix D: Oracle Spatial geometry type
	What is Oracle Spatial?
	How does ArcSDE use Oracle Spatial?
	How ArcSDE uses existing Oracle Spatial tables
	Interoperability considerations

	Appendix E: The well-known binary representation
	Numeric type definitions
	XDR (big endian) encoding of numeric types
	NDR (little endian) encoding of numeric types
	Conversion between the NDR and XDR representations of WKB geometry
	Description of WKB geometry byte streams
	Assertions for well-known binary representation for geometry

	Appendix F: Storing locators
	Locator schema

	Appendix G: Making a direct connection
	What files do you need?
	How to get your database setup files
	Environment variables
	Client/Database compatibility
	Registration and authorization
	Setting up clients for Oracle direct connect

	Appendix H: Storing XML data
	Configuring ArcSDE for Oracle
	ArcSDE XML columns database schema

	Index

