	[image:  ]
	

Authorizing ArcGIS 10 Using ASR Files







Overview:
The normal procedure for authorizing ArcGIS 10 involves the Software Authorization Wizard (SAW) interacting with Esri Customer Service. The SAW uploads the customer’s product and feature authorization numbers to Esri and then downloads the corresponding license fulfillments to the customer’s machine. This process can be done via the internet, email, or two-way file transfers. 

For some 3rd party developers who embed ArcGIS Engine or Desktop in their own applications, the new ArcGIS 10 authorization process described above may not fit well with the authorization techniques used earlier with ArcGIS 9.x. Earlier versions of ArcGIS were authorized using ECP files or ESU9, which allowed considerable flexibility in terms of license redistribution and authorizing in disconnected environments. 

For those 3rd party developers whose existing licensing model is incompatible with the normal ArcGIS 10 authorization process, a special method for delivering license fulfillments can be requested. This alternate method involves the use of “ASR” files to authorize ArcGIS. 

ASR (Activation Specification Record) files are text files which can be used to deliver ArcGIS 10 Engine or Desktop single-use license fulfillments. The application of an ASR file takes place locally and does not require any interaction with Esri Customer Service.  

In general, there is no limit to the number of times an ASR file can be applied on a machine or the number of machines on which it can be applied. This makes it important to tightly control access to ASR files. All ASRs issued by Esri are encrypted. A unique ASR password is provided by Esri to each 3rd party developer receiving ASR-based license fulfillments. The ASR password is used as a parameter to the ASR authorization and deauthorization interfaces. It is used internally by the Esri code to decrypt the ASR. The ASR password insures that a 3rd party developer’s ASRs can’t be used by other developers’ applications. The ASR password is static for a given release and can usually be hard-coded into a 3rd party developer’s licensing code.

ASR defined:
As mentioned above, the ASR license file is much like the prior ECP or ESU9 license files used with earlier versions of ArcGIS.  An ASR is an XML-based text file which contains information about the specific authorizations (feature name, expiration date, version) to be fulfilled.  The XML is hashed and signed; it cannot be altered.

ASR comparison to ECP and ESU9:
The advantage of the ASR, in comparison to ECP and ESU9 licenses, is that the fulfillments it generates are bound to the physical attributes of the authorized machine.  The internal files containing the license fulfillments cannot be copied from one machine to another.  However, physical attributes of a machine can always change (for example, during major hardware upgrades) causing the binding of the ASR to break.  If this occurs, the developer’s application must provide logic to repair the ASR, which will re-bind to the new physical hardware attributes.


ASR-related interfaces:
The IAuthorizeLicense COM interface provides the following methods for using an ASR file:

AuthorizeASR 
AuthorizeASRFromFile
DeauthorizeASR
DeauthorizeASRFromFile
RepairASR
RepairASRFromFile
CheckASR
CheckASRFromFile
get_FeaturesAdded
get_LastError

The ASR can be located on disk or hard-coded as a string into the source code of the developer’s application. The methods with the “FromFile” suffix handle the former case. If you wish to embed the ASR text as a string, be aware that the ASR text sequences are large and may include several thousand characters for each license feature being authorized.

The developer’s Esri-provided ASR password is a required parameter for each of the authorize, deauthorize, and repair methods.

All of the ASR-related methods return a standard “HRESULT” value. 

Authorizing using an ASR:
The authorization process applies the license fulfillments contained within the ASR to the local machine:

1. Authorization sequence with ASR file on disk:
  
CoInitialize(NULL);
IAuthorizeLicensePtr pAuth;
pAuth.CreateInstance(CLSID_AoAuthorizeLicense);
HRESULT hResult = pAuth->AuthorizeASRFromFile(_T("<path_to_asr>"), _T("<password>"));

1. Authorization sequence with ASR embedded, as a string, within the application:

CoInitialize(NULL);
IAuthorizeLicensePtr pAuth;
pAuth.CreateInstance(CLSID_AoAuthorizeLicense);
HRESULT hResult = pAuth->AuthorizeASR(_T("<asr_string>"), _T("<password>"));

1. If desired, the instance of IAuthorizeLicense may also be used to check which features have been authorized.

BSTR featuresAdded;
hResult = pAuth->get_FeaturesAdded(&featuresAdded);

Deauthorizing/Transferring an ASR’s license fulfillments:
Deauthorization involves removing the ASR-generated license fulfillments from a machine. 

Deauthorization should be performed when a client has agreed to decommission the use of a single machine running the OEM application.  Deauthorization should also be used in a case where the client is choosing to transfer their single use authorization to another machine, meaning their licenses would be deauthorized on the original machine then authorized again on a separate machine to run the OEM application.

1) Deauthorization sequence with ASR file on disk:

CoInitialize(NULL);
IAuthorizeLicensePtr pAuth;
pAuth.CreateInstance(CLSID_AoAuthorizeLicense);
HRESULT hResult = pAuth->DeauthorizeASRFromFile(_T("<path_to_asr>"), _T("<password>"));


2) Deauthorization sequence with ASR embedded, as a string, within the application:

CoInitialize(NULL);
IAuthorizeLicensePtr pAuth;
pAuth.CreateInstance(CLSID_AoAuthorizeLicense);
HRESULT hResult = pAuth->DeauthorizeASR(_T("<asr_string>"), _T("<password>"));

3) The ArcGIS Administrator may be used to verify that the appropriate license fulfillments have been removed from the machine.

Repairing broken license fulfillments using an ASR:
The Repair process involves removing broken license fulfillments from the machine, and reauthorizing or reinstalling them from the original ASR.

ASR-generated license fulfillments can break in the event of a major hardware upgrade.  If enough aspects of a machine’s hardware profile change, then the license fulfillments become untrusted and the repair process is required to regenerate the license fulfillments based on the new hardware characteristics. Every 3rd party developer using ASR-based licensing must include license repair logic within their application. The repair option will need to be performed whenever the licenses become untrusted.

1) Repair sequence with ASR file on disk:

CoInitialize(NULL);
IAuthorizeLicensePtr pAuth;
pAuth.CreateInstance(CLSID_AoAuthorizeLicense);
HRESULT hResult = pAuth->CheckASRFromFile((_T("<path_to_asr>"), _T("<password>"));
if (hResult != S_OK) // If check fails, then repair
           hResult = pAuth->RepairASRFromFile(_T("<path_to_asr>"),
             _T("<password>"));

2) Repair sequence with ASR embedded, as a string, within the application:

CoInitialize(NULL);
IAuthorizeLicensePtr pAuth;
pAuth.CreateInstance(CLSID_AoAuthorizeLicense);
HRESULT hResult = pAuth->CheckASR((_T("<asr_string>"), _T("<password>"));
if (hResult != S_OK) // If check fails, then repair
           hResult = pAuth->RepairASR(_T("<asr_string>"), _T("<password>"));

3) If desired, the instance of IAuthorizeLicense may also be used to check which features have been repaired.

BSTR featuresAdded;
hResult = pAuth->get_FeaturesAdded(&featuresAdded);

Using an ASR with ArcGIS 10.0:
The IAuthorizeLicense COM interface is not available with a standard ArcGIS 10.0 install. A supplemental DLL and an ArcGIS Engine or Desktop patch are required to obtain the ASR-related functionality. 

The supplemental DLL is “AoAuthorizer.dll”, which must be installed and registered as part of the developer’s application. The AoAuthorizer dll should not be installed into any of the ArcGIS Engine or Desktop installation folders. When building an application that will make use of the ASR functionality, it is necessary to import the AoAuthorizer.dll as shown in the samples below.

For .NET applications, the “ESRI.ArcGIS.AoAuthorizer.dll” has been provided to contain the runtime metadata for the types defined within the AoAuthorizer.dll.  This assembly DLL must be referenced when building the .NET application.

The needed ArcGIS Engine or Desktop patch is provided in the form of an MSP that must be applied to a 10.0 Final ArcGIS Engine or Desktop install. The patch is only need with 10.0 Final. It will be included in 10.0 Service Pack 1.  

Migration Warning:
At the ArcGIS 10.1 release, the IAuthorizeLicense interface will be moved from AoAuthorizer.dll to the esriSystem.olb.  Possible coding changes may be required during the upgrade of the OEM application.


C++ Samples:

stdafx.h
#include <atlbase.h>

#pragma warning(push)
#pragma warning(disable : 4192) /* Ignore warnings for types that are duplicated in win32 header files */
#pragma warning(disable : 4146) /* Ignore warnings for use of minus on unsigned types */

#import "C:\\program files\\common files\\ArcGIS\\bin\\ArcGISVersion.dll" raw_interfaces_only raw_native_types named_guids
#import "esriSystem.olb" raw_interfaces_only raw_native_types no_namespace named_guids exclude("OLE_COLOR", "OLE_HANDLE", "VARTYPE")
#import "AoAuthorizer.dll" raw_interfaces_only raw_native_types no_namespace named_guids

#pragma warning(pop)


Authorize ASR From File:

#include "stdafx.h"

int main(int argc, char *argv[])
{
  CoInitialize(0);
  {
    // Must Bind to the correct ArcGIS version
    ArcGISVersionLib::IArcGISVersionPtr ipVersion;
    ipVersion.CreateInstance(ArcGISVersionLib::CLSID_VersionManager);
    VARIANT_BOOL pass = VARIANT_FALSE;
    // For Desktop, use ArcGISVersionLib::esriArcGISDesktop
    ipVersion->LoadVersion(ArcGISVersionLib::esriArcGISEngine,
CComBSTR(L"10.0"), &pass);

    IAuthorizeLicensePtr pAuth(CLSID_AoAuthorizeLicense);
    HRESULT hResult = pAuth->AuthorizeASRFromFile
(_T("<path_to_asr>"), _T("<password>"));


    	    BSTR featuresAdded;
    hResult = pAuth->get_FeaturesAdded(&featuresAdded);
  }
  CoUninitialize();

  return 0;
}

Deauthorize ASR:

#include "stdafx.h"

int main(int argc, char *argv[])
{
  CoInitialize(0);
  {
     	    // Must Bind to the correct ArcGIS version
    ArcGISVersionLib::IArcGISVersionPtr ipVersion;
    ipVersion.CreateInstance(ArcGISVersionLib::CLSID_VersionManager);
    VARIANT_BOOL pass = VARIANT_FALSE;
    // For Desktop, use ArcGISVersionLib::esriArcGISDesktop
    ipVersion->LoadVersion(ArcGISVersionLib::esriArcGISEngine,
CComBSTR(L"10.0"), &pass);

    IAuthorizeLicensePtr pAuth(CLSID_AoAuthorizeLicense);
    BSTR strAsr = _T("<asr_string>") ;
    BSTR strPassword = _T("<password>") ;
    HRESULT hResult = pAuth->DeauthorizeASR(strAsr, strPassword);
  }
  CoUninitialize();

  return 0;
}

Repair ASR From File:

#include "stdafx.h"

int main(int argc, char *argv[])
{
  CoInitialize(0);
  {
    // Must Bind to the correct ArcGIS version
    ArcGISVersionLib::IArcGISVersionPtr ipVersion;
    ipVersion.CreateInstance(ArcGISVersionLib::CLSID_VersionManager);
    VARIANT_BOOL pass = VARIANT_FALSE;
    // For Desktop, use ArcGISVersionLib::esriArcGISDesktop
    ipVersion->LoadVersion(ArcGISVersionLib::esriArcGISEngine,
CComBSTR(L"10.0"), &pass);

    IAuthorizeLicensePtr pAuth(CLSID_AoAuthorizeLicense);
    HRESULT hResult = pAuth->CheckASRFromFile((_T("<path_to_asr>"),
_T("<password>"));

    if (hResult != S_OK) // If check fails, get last error
          {    
            BSTR error;
		int  errorCode; 
pAuth->get_LastError(&error, &errorCode); // Get error string and code

      if (errorCode == -5) // ASR fulfillments are untrusted
	{
  hResult = pAuth->RepairASRFromFile
    (_T("<path_to_asr>"), _T("<password>"));
    

    	        BSTR featuresAdded;
        hResult = pAuth->get_FeaturesAdded(&featuresAdded);
	}
    }
  }
  CoUninitialize();

  return 0;
}



.NET Samples:

Authorize ASR From File:
using System;
using System.Text;
using System.Runtime.InteropServices;
using ESRI.ArcGIS.AoAuthorizer;
using AoAuthorizerLib;

namespace SampleAuthorizeApp
{
    	  class Program
    	  {
          static void Main(string[] args)
          {
            // Set Runtime to Engine
            ESRI.ArcGIS.RuntimeManager.Bind(ESRI.ArcGIS.ProductCode.Engine);
            // For Desktop, use ESRI.ArcGIS.ProductCode.Desktop

            IAuthorizeLicense aoAuth = new AoAuthorizeLicenseClass();
            try
            {
              aoAuth.AuthorizeASRFromFile("<path_to_asr>”, "<password>");
            

              string features = aoAuth.FeaturesAdded;
            }
            catch (COMException ex)
            {
              string lastError;
              int error = aoAuth.get_LastError(out lastError);

              Console.Out.WriteLine(error + ": " + lastError);
            }
          }
        }
      }

Deauthorize ASR:
using System;
using System.Text;
using System.Runtime.InteropServices;
using ESRI.ArcGIS.AoAuthorizer;
using AoAuthorizerLib;

namespace SampleAuthorizeApp
{
    	  class Program
    	  {
          static void Main(string[] args)
          {
            // Set Runtime to Engine
            ESRI.ArcGIS.RuntimeManager.Bind(ESRI.ArcGIS.ProductCode.Engine);
            // For Desktop, use ESRI.ArcGIS.ProductCode.Desktop

            IAuthorizeLicense aoAuth = new AoAuthorizeLicenseClass();
            try
            {
              aoAuth.DeauthorizeASR("<asr_string>", "<password>");
            }
            catch (COMException ex)
            {
              string lastError;
              int error = aoAuth.get_LastError(out lastError);

[bookmark: _GoBack]              Console.Out.WriteLine(error + ": " + lastError);
            }
          }
        }
      }

Repair ASR From File:
using System;
using System.Text;
using System.Runtime.InteropServices;
using ESRI.ArcGIS.AoAuthorizer;
using AoAuthorizerLib;

namespace SampleAuthorizeApp
{
    	  class Program
    	  {
          static void Main(string[] args)
          {
            // Set Runtime to Engine
            ESRI.ArcGIS.RuntimeManager.Bind(ESRI.ArcGIS.ProductCode.Engine);
            // For Desktop, use ESRI.ArcGIS.ProductCode.Desktop

            IAuthorizeLicense aoAuth = new AoAuthorizeLicenseClass();
            try
            {
              aoAuth.CheckASRFromFile("<path_to_asr>", "<password>");
            }
            catch (COMException ex)
            {
              string lastError;
              int error = aoAuth.get_LastError(out lastError);

              if (error == -5) // ASR fulfillments are untrusted
		  {
                aoAuth.RepairASRFromFile("<path_to_asr>", "<password>");

                string features = aoAuth.FeaturesAdded;
              }
            }
          }
        }
      }

API Reference:

AuthorizeASR

	Authorizes an ASR from a given string.

	Syntax

	HRESULT AuthorizeASR(BSTR strAsr, BSTR password)

	Parameters

	The AuthorizeASR function uses the following parameters:

	Parameter
	Description

	strAsr
	ASR string.

	password
	Password string.


	
Return Values

	The following values are returned by AuthorizeASR:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.

Possible error codes and messages for AuthorizeASR:
· -1:  “Could not process ASR”
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -98:  “Could not load AfCore.dll”




AuthorizeASRFromFile

	Authorizes an ASR from a file.

	Syntax

	HRESULT AuthorizeASRFromFile(BSTR fileName, BSTR password)

	Parameters

	The AuthorizeASRFromFile function uses the following parameters:

	Parameter
	Description

	fileName
	ASR file path.

	password
	Password string.


	
Return Values

	The following values are returned by AuthorizeASRFromFile:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.

Possible error codes and messages for AuthorizeASRFromFile:
· -1:  “Could not process ASR”
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -98:  “Could not load AfCore.dll”




DeauthorizeASR

	Deauthorizes an ASR from a given string.

	Syntax

	HRESULT DeauthorizeASR(BSTR strAsr, BSTR password)

	Parameters

	The DeauthorizeASR function uses the following parameters:

	Parameter
	Description

	strAsr
	ASR string.

	password
	Password string.


	
Return Values

	The following values are returned by DeauthorizeASR:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.

Possible error codes and messages for DeauthorizeASR:
· -1:  “Could not process ASR”
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -98:  “Could not load AfCore.dll”




DeauthorizeASRFromFile

	Deauthorizes an ASR from a file.

	Syntax

	HRESULT DeauthorizeASRFromFile(BSTR fileName, BSTR password)

	Parameters

	The DeauthorizeASRFromFile function uses the following parameters:

	Parameter
	Description

	fileName
	ASR file path.

	password
	Password string.


	
Return Values

	The following values are returned by DeauthorizeASRFromFile:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.

Possible error codes and messages for DeauthorizeASRFromFile:
· -1:  “Could not process ASR”
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -98:  “Could not load AfCore.dll”




RepairASR

	Repairs an ASR from a given string.

	Syntax

	HRESULT RepairASR(BSTR strAsr, BSTR password)

	Parameters

	The RepairASR function uses the following parameters:

	Parameter
	Description

	strAsr
	ASR string.

	password
	Password string.


	
Return Values

	The following values are returned by RepairASR:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.

Possible error codes and messages for RepairASR:
· -1:  “Could not process ASR”
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -98:  “Could not load AfCore.dll”




RepairASRFromFile

	Repairs an ASR from a given string.

	Syntax

	HRESULT RepairASRFromFile(BSTR fileName, BSTR password)

	Parameters

	The RepairASRFromFile function uses the following parameters:

	Parameter
	Description

	fileName
	ASR file path.

	password
	Password string.


	
Return Values

	The following values are returned by RepairASRFromFile:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.

Possible error codes and messages for RepairASRFromFile:
· -1:  “Could not process ASR”
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -98:  “Could not load AfCore.dll”




CheckASR

	Checks the integrity of the fulfillments authorized from the ASR string.

	Syntax

	HRESULT CheckASR(BSTR strAsr, BSTR password)

	Parameters

	The CheckASR function uses the following parameters:

	Parameter
	Description

	strAsr
	ASR string.

	password
	Password string.


	
Return Values

	The following values are returned by CheckASR:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.  An E_FAIL return will presumably indicate the ASR licenses have become “untrusted”.

Possible error codes and messages for CheckASR:
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -5:  “ASR is untrusted”
· -98:  “Could not load AfCore.dll”




CheckASRFromFile

	Checks the integrity of the fulfillments authorized from an ASR file.

	Syntax

	HRESULT CheckASRFromFile(BSTR fileName, BSTR password)

	Parameters

	The CheckASRFromFile function uses the following parameters:

	Parameter
	Description

	fileName
	ASR file path.

	password
	Password string.


	
Return Values

	The following values are returned by CheckASRFromFile:

	Return Value
	Description

	HRESULT
	S_OK if success, E_FAIL if error.



Error Returns

If HRESULT is equal to E_FAIL, run get_LastError to view a description of the error.  An E_FAIL return will presumably indicate the ASR licenses have become “untrusted”.

Possible error codes and messages for CheckASRFromFile:
· -2:  “ArcGIS Licensing handle error”
· -3:  “Invalid Password”
· -4:  “ASR is invalid or corrupt”
· -5:  “ASR is untrusted”
· -98:  “Could not load AfCore.dll”




get_LastError

	Gets the last known error code and message returned from the previously executed routine.

	Syntax

	HRESULT get_LastError(BSTR* lastError, int* lastErrorCode)

	Parameters

	The get_LastError function uses the following parameters:

	Parameter
	Description

	lastError
	Pointer to string to hold the last error message.

	lastErrorCode
	Pointer to integer to hold the last error code.



Return Values

	The following values are returned by get_LastError:

	Return Value
	Description

	HRESULT
	S_OK if success, E_POINTER if null.



	Possible lastErrorCode codes, lastError messages and troubleshooting tips:

· -1:  “Could not process ASR” – Check that the application can locate and has read access to the ASR file on disk.  Be sure the encrypted ASR file has not been truncated or modified in any way.

· -2:  “ArcGIS Licensing handle error” – Check that the FLEXnet Licensing Service is installed on the machine.  If not, the ArcGIS installation will need to be repaired.

· -3:  “Invalid Password” – The password specified for the supplied ASR is invalid.

· -4:  “ASR is invalid or corrupt” – The content of the ASR file is invalid or has been altered.  Diff the ASR content with the original ASR received from Esri.

· -5:  “ASR is untrusted” – The ASR fulfillments have become untrusted, most likely due to a hardware change. A repair operation must be performed to restore the ASR fulfillments.

· -98:  “Could not load AfCore.dll” – The application has been unable to bind to an appropriate ArcGIS installation.  Check to be sure the application has read access to the ArcGIS Engine or Desktop bin folder.

· -99:  “Unknown Authorization Error” – An unexpected error has occurred.  Contact Esri technical support with reproducible steps.

Error Returns

If HRESULT is equal to E_POINTER, there are no current error messages to report.


get_FeaturesAdded

	Gets the list of features added from the last authorization procedure.

	Syntax

	HRESULT get_FeaturesAdded(BSTR* featuresAdded)

	Parameters

	The get_FeaturesAdded function uses the following parameters:

	Parameter
	Description

	featuresAdded
	Pointer to string to hold the features that were authorized.  Features are delimited by an end of line character “\r\n”



Return Values

	The following values are returned by get_FeaturesAdded:

	Return Value
	Description

	HRESULT
	S_OK if success, E_POINTER if null.



Error Returns

If HRESULT is equal to E_POINTER, there are no current features that were authorized.


December 17November 30, 2010	Page 1 of 1	Esri Confidential information
		For internal use only



December 17November 30, 2010	Page 7 of 18	Esri Confidential information
		For internal use only

image1.jpeg




