Course introduction

Introduction
Course goals
Additional resources
Installing the course data
Icons used in this workbook
Understanding the ArcGIS Platform

1 Getting started with spatial analysis

Lesson introduction
What is spatial analysis?
Proximity analysis
Overlay analysis
Statistical analysis
Temporal analysis
The spatial analysis workflow
Frame the question
Exercise 1: Apply the spatial analysis workflow to solve a problem
 Frame the question
 Explore the data
 Choose methods and tools
 Perform the analysis
 Examine the results
 Share the results in a report
Lesson review

2 Planning and preparing for analysis

Lesson introduction
Planning for analysis
Analysis methods
Raster data considerations
Preparing points for raster analysis
Data quality
Standardizing spatial reference
Working with geoprocessing environments and documentation
Data preparation for raster analysis: Interpolation
Exercise 2: Prepare data for a site selection analysis
 Explore the data
 Create the study area boundary
 Make environment settings
 Clip the roads to the study area
 Reduce extent of elevation raster to the study area
 Convert zoning polygons to raster
 Create a raster containing only agricultural zoning
3 Performing proximity analysis

Lesson introduction
What is proximity analysis?
When to use proximity analysis
Categories of proximity analysis
How do ArcGIS tools measure proximity?
Buffering at a world scale
Data type and proximity analysis
Calculating decibel levels with raster proximity analysis
Exercise 3: Use proximity analysis for emergency planning
 Allocate resources to each school
 Determine straight-line distances between hospitals and schools
 Calculate flight times for air ambulances
 Identify traffic control areas
 Identify roads within each traffic control area

Lesson review

4 Performing overlay analysis with vector data

Lesson introduction
What is overlay analysis?
Overlay techniques
Performing overlay
Apportioning attributes
Overlay with Use Ratio Policy
Exercise 4: Use overlay analysis to assess risk of tornado damage
 Explore the data
 Determine critical facilities in the tornado path
 Estimate road damage
 Create a new model
 Add an iterator
 Make a feature layer
 Overlay parcels with the tornado path
 Add a field to store property loss
 Calculate damage values
 Summarize total property damage
 Prepare the model to run as a tool
 Run the model and view results
 Share the model as a geoprocessing package
 Test the geoprocessing package

Lesson review
5 Performing overlay analysis with raster data

Lesson introduction
What is raster overlay?
Deriving surfaces from raster sources
Deriving rasters from vector sources
Locating a vineyard using raster overlay
Binary overlay analysis
Weighted overlay analysis
Weighted overlay workflow
A typical raster overlay question
Reclassification
Considerations for reclassification
Assigning weights
Exercise 5: Locate a vineyard using raster overlay
 Open the map and explore data
 Derive a slope surface from elevation
 Derive a distance from highways surface
 Examine raster cell values
 Manually reclassify the elevation raster
 Reclassify distance using remap file
 Reclassify slope using remap file
 Overlay rasters using Raster Calculator
 Modify weights and rerun Raster Calculator
 Use the Raster Calculator to combine cells ranked 4 and 5

Lesson review

6 Analyzing spatial patterns

Lesson introduction
What is a spatial pattern?
Exploring descriptive statistics
Mean center
Standard deviational ellipses
Working with data distributions
The Average Nearest Neighbor tool
The Spatial Autocorrelation tool
Hot spot analysis
Exploring patterns
Exercise 6: Analyze 911 incident distribution using spatial statistics
 Explore the data
 Run the Average Nearest Neighbor tool
 Run the Spatial Autocorrelation tool
 Perform hot spot analysis to aggregate incidents and locate hot spots
 Perform hot spot analysis using a bounding polygon to set study area
Perform hot spot analysis on response times for 911 incidents

Lesson review

7 Analyzing temporal patterns

Lesson introduction
What is temporal analysis?
Working with time-aware data
Incorporating time in your analysis
Temporal analysis of piracy incidents
Temporal patterns and spatial statistics
Measuring statistics over time
Space-time analysis
Grouping analysis
Exercise 7A: Analyze temporal patterns in piracy data
 Visually analyze patterns in the data
 Use the time slider to analyze incidents by date
 Analyze temporal patterns
 Create time series animation
Exercise 7B: Space-time cluster analysis
 Explore incident data
 Aggregate incident data
 Create a space-time window
 Perform space-time hot spot analysis
Exercise 7C: Perform grouping analysis
 Visually analyze 911 data
 Run multivariate grouping analysis
 Run grouping analysis by weekday

Lesson review

Appendixes

Appendix A: Esri data license agreement
Appendix B: Answers to lesson review questions
 Lesson 1: Getting started with spatial analysis
 Lesson 2: Planning and preparing for analysis
 Lesson 3: Performing proximity analysis
 Lesson 4: Performing overlay analysis with vector data
 Lesson 5: Performing overlay analysis with raster data
 Lesson 6: Analyzing spatial patterns
 Lesson 7: Analyzing temporal patterns