Chapter i

uUsing Python in
labeling and field
calculations

infroduction

As you begin working with Python as a programming language and start incorporating
Python scripts into ArcGIS, you will find that there are many places where Python
code can be used. This use may be as a small code snippet as demonstrated in this
chapter or in fully developed programs as you will see in later chapters. For these first
tutorials, take extra time to research the various Python and ArcGIS components and
the structure of the code. As the projects become more complex, you will appreciate
understanding the basics of this type of programming.

2

Chapter 1 Using Python in labeling and field calculations

Tutorial -1 Python infroduction and
formatting labels

Python code can be used in places other than fully developed scripts. The Label Expression dialog
box in ArcGlIS allows you to insert code to control labels on your map.

Learning objectives
+ Basics of Python
« Text formatting

« Variable manipulation

Preparation
Research the following topics in ArcGlIS for Desktop Help:
« “What is Python?”

+ “Building label expressions”

Introduction

Python is a powerful scripting and programming tool, but you need to know the basic rules of the
game before you start playing. This tutorial presents a summary of the components most commonly
used in ArcGlIS. You can reference the Python documentation online at http://www.python.org and
other Python reference books, such as Python Scripting for ArcGIS by Paul A. Zandbergen (Esri Press,
2013), for full descriptions and more advanced tools. Also, research the ArcGlS-related tool you will
be using in ArcGlIS for Desktop Help, where you will find descriptions of the tools and code samples
that can be used to better understand the tool’s usage.

Here are some basic rules for Python:
« Python code runs in a linear fashion—from top to bottom.

« Python includes variables, which can contain a variety of data types, including numbers, strings,
lists, tuples, and objects (with properties).

« Variable types (e.g., numeric, string, list, date) do not need to be declared—Python determines
the variable type based on the input.

« Variable names are case sensitive—"myFeatureClass” is not the same as “myfeatureclass.”

« Either single or double quotation marks can be used when creating string-type variables—the
Python code interpreter does not care, so “myFeatureClass” is the same as ‘myFeatureClass.’

« Indentation in Python is important. Indenting is a way to group tools and operations into a set of
code within your script, such as a code block associated with an if or while statement. Indentations
are typically two spaces or four spaces; you can use tabs, but do not mix tabs and spaces.

The next few steps will let you practice some of these rules before you tackle the first tutorial.

Tutorial 1-1 Python introduction and formatting labels 3
1. Open your integrated development environment (IDE), and start a new script.

The example shown in the graphic is a modified PyScripter template for ArcGIS that includes

the name of the script, the author, a script description, the date of creation, and the license level
that this script might require. Information on setting up this template in PyScripter is found in
appendix A. Note that these lines are preceded by a hashtag, which denotes them as comments and
not code that can be run.

__ﬁ __
Name: Rules Test

Purpose: Sample code to demonstrate Python

#

Author: David Allen

#

Created: B82/17/2814

Copyright: {c) Dovid Allen 2814

License: ArccIs 18.2

_:E __

2. Typethe code as shown:

+ myMName = “Dawid”
* print "My name is
* yourName = “Holly™

+ myName + * and your name is Y + yourName +

This code creates a couple of variables and prints them to the IDE code window. Note that the
variable is created simply by using the equals sign, and the various parts are brought together in the
print statements using the plus sign. This is called concatenation, which basically creates one line of
text out of all the components.

If you were to try and run this code, you'd get an error. Why? Python runs these lines in order, from
top to bottom. The print statement is run before the second variable is defined.

3. Change the order of the statements so that they will run correctly. Save the script for future
reference, and then run the script.

Remember that Python runs from top to bottom, so the lines of code must be in the correct order.

4. Type the code shown in the graphic to use different types of formatting to create four variables:

* streetName = ‘Candy Lane'

+ addressNumber = 313

¢ percentOccupied = 45035

*+ gwnerlame = “Brown, Charles™

Note the format of the variable names. The names are descriptive of what they contain, start with
lowercase letters, and use uppercase letters to distinguish words within the name. This is called camel
case. Although this format is not required, it is standard in the ArcGlIS for Desktop Help sample code.

4 Chapter 1 Using Python in labeling and field calculations

Two of the example variables shown are strings (text), and each of them uses a different style of
quotation marks. Both styles can be used, and both are considered regular strings. Note that the
numbers are also different. One has decimal points, and one does not, but both are still interpreted
in Python as numeric. The IDE shows these lines in different colors so that you can tell the number
variables from the string variables.

Expressions can be used to concatenate the strings and to perform math on the numbers. The
graphic in step 2 shows an example of concatenating string variables with the plus sign. Numbers can
be concatenated into these types of sentences as well, but numbers must first be converted to strings
using the string formatting method, .str(). Because the IDE colored the numbers differently, you can
easily tell when a conversion is necessary.

Type the code shown in the graphic, and then run your script to see the results.

+ print "The owner of ™ + str({addressNumber) + " " + streetName + " is " + ownerName + °
+ print "The uncccupied area is " + str(18@ - percentOccupied) + "

The strings are concatenated together, and the number is added once it is converted to a string.
Note that in the second line, there is some math occurring inside the string conversion function. This
calculation is fine as long as the result is converted to a string. Also, pay attention to where the extra
spaces are added to the text to make the sentence appear correct when printed.

The owner of 313 Candy Lane is Brown, Charles.
The unoccupied ares is S4.65.
B

It is also possible to slice characters from a string variable. Each character in the variable is
automatically assigned an index number, starting at the left with zero (0). You can count over to the
characters you want, and then slice those characters from the string. To slice characters, add square
brackets at the end of the variable ([]), and then inside the brackets, add the starting index number, a
colon, and the ending index number.

Type the print statement shown in the graphic to slice only the street name from the streetName
variable.

* print "The strest name is " + streetName[@:5] + ™ and is designated as a2 " + strestName[c:] +

The first slice gets all the characters starting at index number 0 over to but not including index
number 5. The second slice gets all the characters starting at index number 6 and over to the end.
The indexes can also be counted with negative numbers from the end of the string. The word Lane
could also have been sliced using this statement, which gets all the characters starting four back from
the end and proceeding to the end, as shown:

¢ print "The strest name is ™ + strestName[@:5] + © and is designated as a ™ + streetMame[-4:] + ™."

Tutorial 1-1 Python introduction and formatting labels 5

A common use of the negative slice is to remove the file extension from the end of a file name. The
example in the previous graphic, using -4, would remove .shp from the end of a file name, regardless
of its length.

Another type of variable is a list. List variables can contain many values and are used extensively in
ArcGiIS to hold lists of feature classes, file names, and workspaces. The individual values within the
string are accessed by using an index number. Each value is given an index number, starting at 0.
For example, a variable with eight list items would have index numbers from 0 to 7.

Type the code shown in the graphic to assign a list to a variable, and then print one of the values
using its index number.

*+ listNames = ["David", "Candy", "Holly", "Timmy"]
+ print listNames[2]
+ print listNames[3]

Remember that the first value is given index number 0, so this code will print the names Holly
and Timmy.

These are simple examples of creating and manipulating variables. More complex manipulations
follow in other sections of the book. Try some of these things in ArcMap.

Close the IDE you've been using and save the file for future reference.

These text manipulations can be used in various parts of ArcGlIS, and this tutorial examines using
them in a labeling expression. The interface you use for labeling features in a map layout will
recognize Python script and allow you to do formatting and make on-the-fly changes to the text that
you may be using from a layer attribute. This feature may save you a lot of time when the attribute
values are not formatted exactly as you like or when your data has to meet a standard that is
different from other datasets you may be using.

Scenario

A standard ArcMap layout is used by your department to review the owners of properties in the
fictitious City of Oleander, Texas. The formatting is not the best, but it is functional for your internal
use. Recently, the city manager asked you to make more of this type of data available through online
maps, and the formatting is not appropriate. You should explore some ways to use Python scripting
to make the text more presentable.

Data

The data is the parcel and ownership data for the City of Oleander, Texas, a small community in
the Oleander/Fort Worth Metroplex (O/FW). A map document is set up to display data for each
property from the owner name field.

6 Chapter 1 Using Python in labeling and field calculations

SCRIPTING TECHNIQUES

The Label Expression dialog box has a Python function built in to make it easier

to use the code. A function is basically a set of code that can receive one or more
values and return values back to the program that called it. In the case of the

label expression, the built-in function is named FindLabel() (which you should not
change). This function appears on a line starting with def, meaning that it defines the
function. The function may also have one or more field names at the end appearing
in parentheses. These field names are passed to the code of the function so that you
can use and manipulate their values. Finally, a return statement returns a value to
the program that called the function, which in this case is the label expression. For
labels, make sure to return a single value.

The Label Expression dialog box lets you use a variety of Python text formatting
methods, including the following:
e .capitalize()—makes the first character of the string a capital letter
e find(X)—finds the specified character in the string
e .isdigit()—returns the value of True if the variable is alphanumeric
e .lower()—makes the entire string lowercase
e Istrip()—strips any spaces from the left end of the string
e .replace(X,Y)—replaces one character with another in the string
e rstrip()—strips any spaces from the right end of the string
o strip()—strips spaces from the start and end of a string
o title()—capitalizes the first character of every word in a string
e .upper()—makes the entire string uppercase

Check your Python reference books for more string and numeric handlers for
variables. Some are obscure, but you never know when they will be useful.

Use Python in the Label Expression dialog box

1.

Using the information provided, write the sequence of the calculation in nontechnical language,
as shown in the following list. Then use this sequence to decide the formal structure of the code.
The goal is to use Python string-handling techniques to dress up the labels on this map.

¢ Change the text to read as a regular name (first, then last).
¢ Add an ampersand (&) if a couple owns the house.

¢ Change the text to upper- and lowercase rather than all uppercase.

This informal description of the processes your code will complete is the pseudo code. Even simple
pseudo code is useful, and as you tackle more complex projects, your pseudo code will reflect this
complexity.

Tutorial 1-1 Python introduction and formatting labels 7

Start ArcMap, and open the map document Tutorial 1-1 from the location where you installed
the book’s sample data and exercises.

LSO — . SNGLES LARSEN

WY HORTES RAYAMNGS, BRANDON S LINDA L

ETUE Magy o o ETUX LESUE LAMCE
CRAMER ROV m.'-‘.'Lf‘Tf"F" CaAUBES OTWELL RGUYEN, A
ETLIC MO '="-‘A.F-I'='- RYAN L BOEEY COY D ETLY TAM

The map in the graphic shows the Elm Fork subdivision with a label on each property that displays
the owner’s name. Although this format is acceptable, the map would look better if the text were
formatted to show the first name followed by the last name. The current format of the data is

“last name-comma-space-first name(s).” This data can be sliced into separate pieces to show it as
“first name(s)—space—last name.” This slice involves using the .find() method on the string, which
returns the index number of the character you will search for, and then using that location in a slice
operation. If you can find the location of the comma, everything before the comma is the last name,
and everything two characters past the comma (remember the space) is the first name(s).

Open the properties of the EIm Fork Addition layer, and click the Labels tab. Then click the
Expression button. It shows the expression as [OwnerName]. At the bottom of the Expression
box, click the Parser arrow, select Python, and then select the Advanced check box in the middle
of the dialog box on the right side.

Labsl Bipression =
Enpression | Mapls
Fremic,
Double-click bo add & field into the expression S Lype =

COECTID .|
Prop_Des_1 E
Prop_Des_2

| UiseCods

| Praita

| Sxtlame

£odi

Append | Secen Wihohs, .. o Diniply cooxlee] wabum cassriplion

|
Loprasith
Warike & function named Findsbes! for the selected parser ¢ Adeaed
farki ekt s P A s ko Ehe Pumcirion
def FindLabel | [Ovwniitane] i
| Ft [Cwariridama]

Werfy P Help Load,. S

} Parser! | Pythan v

8 Chapter 1 Using Python in labeling and field calculations

This step automatically enters the first few lines of Python code to define the FindLabel() function.
At the end of this line is a colon (). All the code that is to be evaluated as part of this function will
appear below this line and be indented, ending with a return statement that sends a value back to
the FindLabel() function and ultimately onto the map. The standard indentation in Python is four
spaces, but the code here uses only two. Next, create a new line of code, indent the code two spaces,
and use the .find() method to determine the index number of the comma in each value.

Place your cursor after the colon, and press Enter. Add two spaces, and then type the following:
rawName = [OwnerName]

It is not always necessary to put the field name into a variable, but it will make the process easier to
understand.

Press Enter, add two spaces, and type the following:
commaNum = rawName.find(“,”)

The value of commaNum is now equal to the index number of the comma. See if you can write the code
to format the string correctly, and store it in a variable named formatName. Here is what needs to happen:

Slice out everything starting at two characters past the comma over to the end of the string, add a
space, and add the slice of characters from the start of the string over to but not including the comma.

After the line of code, press Enter, and add two spaces. Type the code to perform the field
formatting. Then replace the expression [OwnerName] in the last line with formatName, as
shown. Click OK, and close the layer properties to see the result.

| Bkt Evgeaaion (===
Expoasson | papies

Fuokhs

Dngble=rhck i ackl Pkl i e mcprmnon Show [ype ™

CRECTI &l
Prog_Qes_| B
Prog_pas 2

LhirCoxde

Prafee

Fhave

P

Bppsbnd i ahst. ., & Drplary oo gy depor i

Evprasson

Wribe 2 function naved Finelsbel For Hhe selected narser. | B
Ak Fomdchl sl o et 1o [P Tt

def Furall sl | [Coriiarintna] 1
rawditame = [Cnmerfiare]
oAb = vt Trek”, ")

Formathisme = ¢ awilarel commabiorni 1] & 4 rawhlae] commaliom|
seduars firmit barn
weriy Pzt e Lo, Sarnn
P | Python -

i Carn

Tutorial 1-1 Python introduction and formatting labels 9

Notice how you can do math in the slice command. A few more things still need to be corrected. The
ownership files use the Latin abbreviation ETUX (et ux) in front of a spouse’s name. Replace that with
an ampersand using the .replace() method.

Open the layer properties, and modify the expression by adding the .replace() method at the end
of the rawName statement, as shown:

rawhame = [Cwnerbame]. replace"ETLX", "&")
Add the .title() method at the end of the return statement to make the names appear in upper-
and lowercase, as shown:

return FormatMame. tikle!)

The resulting labels show the first and last names in upper- and lowercase, along with ampersands in
place of the combined wording ETUX.

When your code matches the graphic, click the Save button, and save the code you have written
to a calculation (.cal) file for later reference. Then click OK to run the script and perform the
calculation.

Jimmy . Brandon S Linda &
& Mary rdac'f(r"gfau‘:mnm? & Leslie Lance
Lawson oms 9 Singles Larsen
Roy & Steven J & MNam D
Mova Elizabeth g}r{uagb; BDS%E% oy & Tami
Cramer Ryan MNguyen

10. Close the map document.

Exercise 1-1

Open the map document Exercise 1-1, a map of the subdivisions in Oleander with their names
displayed. The city manager needs to show this map to another city and wants you to dress it
up a little. First, the names should not have .PDF at the end, and second, the names should be in
upper- and lowercase with the first letter of each word capitalized.

10 Chapter 1 Using Python in labeling and field calculations

Write the steps needed to accomplish this task, including the Python code to use for the labeling.
Then apply the code to the labeling expression in the map to reformat the text.

Tutorial 1-1 review

This code performed a lot of string handling with different variables. Note how you

are able to find specific characters in a variable, store the index number, and use that
number to slice the string in different ways. There may be times when this gets tricky, such as
when an address number has an apartment or unit number that is a letter character

(e.g., 304 A Pine St.). Looking for the first space would not give you the correct address number.
You could look for the instance where a character stands alone—in other words, any single
character with a space on both sides. To give a more complicated example, what if you had
single-letter street names, such as D Street or P Street? The stand-alone character is the
street name and not part of the address number. To make it even more confusing, Galveston,
Texas, has half streets, such as P% Street. This situation may require some complex Python
coding to solve.

Study questions

1. Will finding the first space always identify the address number? Could you find all the
spaces? Write some code to find the first stand-alone character in a string (a single
character with a space on both sides).

2. Can strings and numbers be combined in Python? Write code to concatenate a text string,
such as “Miles to go are,” with a numeric variable, such as 102.

3. Give examples of when you might use the .upper(), .title(), and .lower() methods.

Tutorial 1-2 Decision making in the Label
Expression dialog box

Labels can be simple displays of data from an attribute table, or with some Python coding, labels can
be used to show values that are not in the table.

Learning objectives
« Defining functions
+ Using if-elif-else logic for decision making

+ Changing the label display text

Tutorial 1-2 Decision making in the Label Expression dialog box 11

Preparation
Research the following topic in ArcGiIS for Desktop Help:

+ “Using If-then-else logic for branching”

Introduction

In tutorial 1-1, you learned how to use Python code to control labels in a map document using
various text-handling techniques. Those techniques involved simply arranging and reformatting the
existing values of the fields used for labeling. You can also create labels that use entirely different text
strings from the fields—it all depends on what you send back to the label expression with the return
command.

In this tutorial, you will apply decision-making techniques to the labels in ArcMap. You will be able to
pull the value out of the field and use it to determine what the label should contain.

Scenario

A file has been provided by the planning office of Oleander. This file needs a map to display at City
Council meetings that shows the general zoning categories of Oleander. You have a good dataset for
this, but the zoning is shown as code rather than a text description. You must use some decision-
making tasks to turn the codes into the appropriate labels.

Data

You are provided with the zoning map for the City of Oleander containing a layer with the zoning
district polygons named General Zoning Districts. This layer has a field named Code, which contains
a coded value for zoning. The codes are as follows:

RES = Residential

MF = Multi-Family
SPEC = Special District
C = Commercial

| = Industrial

12

Chapter 1 Using Python in labeling and field calculations

SCRIPTING TECHNIQUES

You will need to build a condition statement using the if statement. This book covers if
statements in more detail in later chapters, but for now, here is a quick introduction.

Every programming language has some version of the if statement to perform
branching based on a condition being true, and Python is no exception, providing
one of the easiest if formats. The first if statement tests a condition that can evaluate
to either True or False, along with a set of code to run if the statement is true. This
statement can be followed by any number of elif statements to run if the condition
is tested to be false—and the elif condition statements are all evaluated in sequence
until one is true. Finally, an else statement is provided with no condition to be met
and is run if all the other conditions are false. A basic decision-making statement
looks like this:

#heck to see which stotenent equols "AUN MET

+ if statementl == "RUM ME™:
rim this code
* return Yalue

+ glif statement2 == "RUN MHE":
run this code

* return Yalue

* 2lif statement3 == “RUN ME™:
rin this code

* return Yalue
+ glse:

print "Mothing is ready to run™
* return vYalue

Note that the evaluator is a double equals sign (check your Python reference for
other evaluators such as the greater than symbol or the lesser than symbol), and the
code for each if, elif, or else statement is kept indented until the next statement. This
format designates which lines of code to run if the statement evaluates to True. The
return statement tells the code what to send back to ArcMap—in this case, the text
for the label.

Use if-elif-else statements in the Label Expression dialog box

Write the pseudo code for this project:
e Get the code value from the field.
e Determine what text to use for each code value.

e Return the text string to the label expression.

Tutorial 1-2 Decision making in the Label Expression dialog box 13

Start ArcMap, and open the map document Tutorial 1-2. Right-click the General Zoning Districts
layer, and open the properties. If necessary, click the Labels tab as shown, and set the Label field

to CODE.

Leyer Proparhies ==
General | Souce | Seiecton | Dt | Symboiogs | Fieids | Detrion Guery | Labels | Jon & Pielstes | Tme [HIML Popup
Labed lesbune in this bayss
esir Lisbesi All s hibuint B Lareh sy -

Al by vl beg Ladegbondl Ly T b ipnialagel

Tt Shrng
Lkl Fmef CODE - Lapienin.
Tt Syprndual

ol Al [-

PRI M

.._ mfu bl

(Githe Ophowrs Fra-defmed Label Sides
Placasresnt Propestiss., Scals Mlanga Lkl Endas..

e [coen

Click the Expression button. Do you remember how to set this to accept Python code? (Hint: set
the Parser to Python and click Advanced.)

Label Expression @
Expression | taplex

Figlds
Dauble-click to add a field inko the expression Show Type *

OBIECTID
CODE
SHAPE_Length
SHAPE_Area

"

Append] ’ Show Yalues..,] Display coded value description

Expression

‘Wrike a Function named FindLabel far the selected parser, [¥] &dvanced
Add fields as parameters to the Function.

def FindLabel { [CODE] J: -
return [CODE]

4 L

[etify][Resek][Help][Load...][Save..,

Patser: [Python ']

[Ok l [Cancel

14
4.

Chapter 1 Using Python in labeling and field calculations

The framework is ready for the code to be entered. First set a variable to equal the zoning code
that is brought into the script by the function. Add two spaces before the variable name to keep
the indentation, as shown:

def FindLabel { [CODE] J: -
zoneode = [TODE]
return [CODE]

Construct the if statement. Remove the line “return [CODE]” because this will be replaced within
the if statement. Add a new line, indent two spaces, and add the if statement, remembering to
add the colon at the end of the line, as shown:

def FindLabel { [CODE]) .
zoneode = [CODE]
if zoneCode == """

Add another line, and indent four spaces. Everything that keeps the four-space indentation will
be evaluated when this if statement evaluates to True. Add a return statement to tell ArcMap
what to use as a label, as shown:

def FindLabel { [CODE]): »
zoneCode = [CODE]
if zoneCode == "C";
rekurn "Cormmercial”

Next, add code to handle what happens when the if statement is not true—you will set up the next
label. Python makes checking multiple conditions easy with the use of an elif statement. Remember
that this statement also gets a colon at the end of the line, and everything after the colon that is kept
to a four-space indentation will run if the condition is true.

Add another line, indent two spaces, and type the elif statement; then add another line with a
four-space indentation and the return statement.

def FindLabel { [CODE] -
zoneCode = [CODE]
if zoneCode =="C"
return "Cammercial”
elif zoneZode == "T";
return "Industrial”

Tutorial 1-2 Decision making in the Label Expression dialog box 15

Your turn

Ad(d the rest of the code to test each of the remaining conditions. Remember that the last line can be an else
statement with no condition. Try it from your own notes first before looking at the code in the next image.
(Hint: make sure to watch your case on variables; use the == evaluator; put a colon at the end of each line
with an if, elif, or else statement but not after the return statement; and watch your indentations carefully).

def FindLabel { [CODE])
zoneCode = [CODE]

if zoneCode == "C";
return "Commercial”
elif zoneCode =="I"

return "Industrial”
elif zoneCode == "MF":
return "Multi-Family"
elif zoneCode == "RES":
return "Residential”
elze:
return "Special District”
4

B

|

8. Click OK and then OK to run the code and create the labels.

If you have an issue, go back over the code, and pay particular attention to the things noted in the

“Your turn” hint.

You will see that your code has turned the zoning codes into a more descriptive label. It is important

to remember that these labels are generated on the fly and used for this map only; these labels are
not stored anywhere in the attribute table.

16 Chapter 1 Using Python in labeling and field calculations

Exercise 1-2

The other map turned out so well that the planner wants a similar map for the comprehensive
land development data. Open the map document Exercise 1-2, and use Python code in the label
expression to turn the following USE_CODE values into descriptive text:

A1 = Single Family

B1 = Multi-Family

F1 = Commercial

F2 = Industrial

PRK = Parks

ROW = Right-of-Way

TX10 = Special Texas District

Write your code before attempting to type the expression in the Label Expression dialog box.

Tutorial 1-2 review

The if statement in Python is one of the easiest to use in the programming world. For any set of
conditions, continue adding elif statements until you have handled all the possible conditions. It is
good practice to put an else statement after the last elif statement just to handle a situation that is
not the norm or that you might have forgotten about or to handle the last known condition without
having to use a condition statement.

If statements can also be nested, but this is only done to test two entirely different sets of conditions.
For instance, your first if statement might be to identify the land-use code, and you nest an if
statement within that statement to determine whether the particular parcel fits within a certain
range of acreage. However, you would not need to use nesting to test for more land-use conditions
as you would with other programming languages. These conditions could easily be handled with
additional elif statements, one for each additional land use.

Another interesting note with if statements is that the condition need only return a value of True
or False. If you are testing a variable that equates to True or False, you need only put the variable as
the condition for the if statement. For instance, the .isDigit() function returns the values of True for
a variable containing alphanumeric characters and False if the variable is empty. If you retrieved a
variable named Name that contained characters, the code myVariable = Name.isdigit() would set
myVariable to either True or False, depending on whether the field had an alphanumeric value. This
situation would make the if statement look like this:

+* myVariable = Name.isdigit()

+ if myVariable:

o print “This field has characters!”
* glse:

o print "This field is empty."”

Tutorial 1-3 Using Python in the Field Calculator 17

The if condition statements can also test for more than one variable at a time, just like a query
statement in ArcMap. The only trick is that there must be a combination of values that equate to
True, or the code will never run. For instance, if you needed to find all the 40-inch or larger PVC pipe,
the code would look like this:

+ if PMaterial == "PVC" and P5ize > 48:
o print “Found a big plastic pipe!"

It does not matter that one condition tested a string-type value and the other tested a numeric
value. Be careful with the condition though, because an incorrect AND or OR can send your code
in an unwanted direction. If you are unfamiliar with the AND and OR handlers, check them out in
ArcGlIS for Desktop Help, and try practicing the statement as a definition query in ArcMap.

Study questions

1. When would you nest if statements, and when would you rely on elif statements? Write
the code to find parcels that have a land-use code of A1, and note whether the acreage is
less than two acres, from two to five acres, or more than five acres. Add additional code to
find parcels with a land-use code of B1, and perform the same test for area.

2. How would you format a complex condition statement? Write the code to find employees
over 50 who are retired if their age is stored in a field named currAge, and the field noting
retirement status is a true/false field named statusRetired.

3. Where can you find more Python methods that deal with string and numeric variables?
Write code to find all the employees with a last name containing more than 10 characters
if their last names are stored in a field named LastName (or else it will not fit on the new
engraved name tags).

Tutorial 1-3 Using Python in the Field
Cailculator

Snippets of Python code can be used in the Field Calculator to perform complex functions, including
any of the text formatting commands shown in the Label Expression dialog box.

Learning objectives
« Text formatting with Python
+ Using Python code blocks

« Concatenating text values

18 Chapter 1 Using Python in labeling and field calculations

Preparation
Research the following topics in ArcGlIS for Desktop Help:
« “Calculate field examples”

 “Fundamentals of field calculations”

Introduction

The first two tutorials show how to use Python code to alter the labeling in an ArcMap map
document. This labeling made the maps look great, but remember that the changes occurred only in
the labels and were not stored anywhere permanently.

To make a more permanent change to your data, you can use Python to calculate the values
in fields. You would normally use the Field Calculator and a simple expression to set a field
value, but there are limits to what you can accomplish with the simple expressions that are
allowed. By using Python code in the Field Calculator, you can store the results for future use
by yourself and others.

Scenario

You received some data from the Fire Department, and it would like you to format the addresses so
that its analyst can geocode them and make a simple presentation map. To do the geocoding, the
address needs to be in a single field, and right now that information is parsed out into five fields. You
must write an expression in the Field Calculator to create a single address with the components in
the right sequence, and without extra spaces.

Data

You are provided a file named FireRuns2010 with the calls for service data from the Oleander Fire
Department. The file contains a variety of data about the type of call, the time it was received and
dispatched, and which unit responded. The file also contains address information that has been split
into five fields:

addNum = address number
stPrefix = street prefix

stName = street name

stType = street type

suffDir = street suffix direction

Tutorial 1-3 Using Python in the Field Calculator

19

SCRIPTING TECHNIQUES

Using Python code in the Field Calculator is a little trickier than the labels expression
because ArcMap does not automatically create the code for the function. You need
to set the parser language to Python, and then select the Show Codeblock check
box. This will expose two empty boxes where you will type your code.

The lower box, called the Expression box, will look familiar. This is the box that you
normally work with for simple calculations and that you used to hold your label
formatting code. Instead of using a regular statement, you will have the expression
call a function from the code box described below. The syntax is to name the
expression, which can be anything you like, but common practice is to begin the
name with a lowercase fn to denote a function. Then in parentheses, add all the
fields from the attribute table that you will be using in your code. It does not matter
how many you use, and they will be separated by commas. You can add them by
double-clicking the field name in the Fields list.

All the code work is done in the Pre-Logic Script Code box, or code box. The first
line defines the function you named in the Expression box. It then has a set of
parentheses and contains a variable name for each of the fields that you are sending
to it. For instance, if your statement in the Expression box has five fields coming

in, the function in the Pre-Logic Script Code box must set up five variables to
accept them. The function ends with a colon, and all the code that follows must be
indented. There is no automatic indenting here, so you must manually add spaces
for indenting and then keep track of them.

Next, type all your Python code to process the data and perform the calculation,
with the last line being the return statement. This code sends a value back to the
Expression box, which is saved to the field. As with the label expressions, the use of if
statements may result in several return statements.

Debugging this code can be problematic, but it is best to start by checking the
indent levels. Then go back over the syntax of the code.

Use Python in the Field Calculator

1.

Write pseudo code to describe the process for reformatting the field value and storing the result:

e Concatenate the values for address number, street prefix, street name, street type, and street

suffix direction into a single value.

e Store this value in the empty field full_address.

20 Chapter 1 Using Python in labeling and field calculations

2. Start ArcMap, and open the map document Tutorial 1-3. If necessary, switch to the List By Source
view in the table of contents. Open the FireRuns2010 table.

3. Right-click the field full_address, and click Field Calculator. A warning about editing outside an
edit session appears. Click Yes to continue.

It can be dangerous to edit outside an edit session in ArcMap because there is no undo option. If you
make a mistake, it is permanent. In this case, you are populating an empty field, so there is no risk of
destroying any critical data by calculating the field.

4. Inthe Parser box, click Python. Below the Fields list, select the Show Codeblock check box.

Field Calculatar =

Parser

WE Scripk @) Pythaon

Fields: Type: Funictions:

OBIECTID " @ number .conjugatel) Jh
o .denominator)
inci_no . "magl) [
prop_use £ String Jnumeratar)
inci_tvpe Date reall)
diskrick vas5_integer_ratiof)

. [fromhex)
shift hex()
CEnSUS Jis_integer()
rumber math.acos()

F'_ math,acoshi

st_prefix S math.asin!:]l -

7] Shaw Cadeblack E|) @ E| D E|

Pre-Logic Script Code:

F

full_address =

About calculating Fields - Load... E—
(a4 Zancel

In the Expression box, you will create a name for the function, such as fnAddress, and write the
Python code to perform your operation. The name here can be anything you like, but standard
convention is to start functions with a lowercase fn to identify their type and add a descriptive name

in uppercase.

Tutorial 1-3 Using Python in the Field Calculator 21

5. In the Expression box under “full_address =,” type the line shown in the graphic. Type the
function name, and double-click the field names to enter them. Be sure to add commas between
the field names.

ful_address =

FnAddress{ Inumber_I, 1st_prefix!, Istreet!, lst_bwpel, Isk_sufFix_dirl) -

Double-clicking the field names to add them to the function will automatically place the proper
characters around the field name. These may be quotation marks, exclamation points, or square
brackets, among others, depending on the data source. It is hard to know exactly which characters
will be needed, so using the double-click method ensures that the correct characters are used.

6. In the Pre-Logic Script Code box, type the following code:

Pre-Logic Script Code:
def FnAddress{addium, stPrefix, sthlame, stTwpe, suffDir): -

This defines a function named fnAddress and accepts each of the fields listed in the Expression

box. Note: This is the format for all code that you will ever write in the Field Calculator. The Label
Expression dialog box names a function, followed by all the fields that will be used in the script. Then
the Pre-Logic Script Code defines the function beginning with def and accepts each of the fields into
a Python variable that you name.

7. Write the Python code to format and concatenate the fields into a single string. Remember to
account for a space between the values. When you have the code entered, click OK to perform
the calculation. If you have difficulties, check your code against the graphic, but try writing the
code on your own first.

Pre-Logic Script Code:

def Fraddress{addhur, skPrefix, skhlamme, skType, sUFFDir): "
formatfddress = ste{addMum) + " " + skPrefix.strip() + " " + stMame. steip() + " " + stType.stripl) + " " + suffDir, skrip()
return FormatAddress, bitled)

4 T (I

This worked pretty well, but there is still a problem. If the stPrefix string is empty, an additional space
is added to the output string. Also, extra spaces are added at the end of the output string if suffDir
is empty. Using what you know about if statements, try writing the code that will test for this field

22

Chapter 1 Using Python in labeling and field calculations

being empty, and then handle the case of what to do if it is empty. It should have this logic (add this
to your pseudo code):

e |f the field stPrefix is empty, write the concatenation without this field included.

e Add acommand at the end of the output to strip off blank spaces.

o |[f the field stPrefix is not empty, write the same concatenation as before with the command
added to strip blank spaces from the end of the string.

You should also investigate other Python formatting tools to remove any blank spaces from the
values and perhaps to control the capitalization.

Right-click the full_address field, and open the Field Calculator dialog box. Type the code you
wrote—making sure to use the correct indentations with the if statements. (Hint: indent two
spaces for every command after the def statement and four spaces for every command to run
with the if statement.) Click OK to test it—the completed code looks like this:

Pre-Logic Script Code:

def FnAddress{addhum, stPrefix, sthame, stType, suffDir): r

if skPrefix ==""
formataddress = str{addMum) + " " + stMame, skeip) +

else:

formataddress = skr{addMum) + " " + skPrefix,skrip() +

+ stTwpe.strip() + " " + suffDir, skrip)

+ stMame, skeip() + " " + skTwpe.strip() + " " + suffDir, skrip)

return Formataddress, title()

4

] (I

Note the use of indentations to distinguish the commands for the different parts of the if statement.
This example also includes the .strip() and .title() functions to help with the text formatting.

You can see that complex scripts can be developed for use in the Field Calculator. The format for any
script you write will be the same: name a function in the Expression box along with the fields you will
be using in the script, define a function in the Pre-Logic Script Code box with a Python variable for
each field named in the function, and write the code to do your processing.

Exercise 1-3

The chief would like to export this data into another program for analysis, but there must be a field
describing which station responded. The field district has a number that designates the station code,
but the chief would like it in the format “Station 1” instead of the code.

Add a text field to the table FireRuns2010, and name it Station. Then write a script in the Field
Calculator that will populate the field with the appropriate text:

151 = “Oleander Station 1”
551 = “Oleander Station 1”
152 = “Oleander Station 2”
552 = “Oleander Station 2”
153 = “Oleander Station 3”
553 = “Oleander Station 3”

Tutorial 1-3 Using Python in the Field Calculator 23
Anything else should be made equal to “Outside Station.”

As a bonus, add the shift code at the end of each value. For instance, for 551 shift B, the output would
read “Oleander Station 1 — Shift B.”

Tutorial 1-3 review

As you can see, the code in the Field Calculator can get complex. The trick is to maintain the
indentations because the code block box does not handle indent levels automatically, as a good IDE
would. It is sometimes good practice to build these statements in your IDE using some preset dummy
data variables to test the syntax and set the indentations correctly. Then you can copy and paste the
code to the Field Calculator.

The same rules that apply to if statements in the Label Expression dialog box also apply to if
statements in the Field Calculator dialog box. Follow these rules carefully, and test any condition
statements to make sure that they will not send your code out of control and that they have an
instance that equates to True.

In both the Field Calculator and Label Expression dialog boxes, you are required to manage your
own indent levels. Because of this, it is good practice to test your code in an IDE first for syntax and
indentations before placing it in the Field Calculator. It is also advisable to calculate values into new,
empty fields rather than to calculate values over existing values. If something is wrong in your code,
you will destroy the original data values. These values would be impossible to recover if you were
calculating outside an edit session.

This tutorial includes condition statements using string values. If the fields or values being compared
do not match in case (uppercase, lowercase, or a combination thereof), the values may not equate
to True, even when they are the same except for case. In this instance, you can use one of the string
formatting functions to force the case to match before performing the testing.

Study questions

1. Could these same scripts be used to display labels on a temporary basis rather than
storing the output string in a field? Write a code example to complete the exercise as a
label statement (if you think it can be done).

2. What other string formatting statements are available for use in Field Calculator scripts?
Write code to compare name fields from two different tables if the first is Name and
stores a value in upper- and lowercase letters and the second is EmpName and stores a
value in all uppercase letters.

3. Besides using double equals signs (==) for “is equal to,” what other evaluators are available
in Python? Write code to find pipe sizes starting at 8 inches and going up to 12 inches.

24

Chapter 1 Using Python in labeling and field calculations

Tutorial 1-4 Decision making in the Field
Cailculator

Complex operations in the Field Calculator can include advanced Python math functions and if-elif-
else logic.

Learning objectives
+ Writing a Python code block

+ Using if-elif-else logic

« Text formatting

Preparation
Research the following topic in ArcGIS for Desktop Help:

« “Using if-then-else logic for branching”

Introduction

In tutorial 1-3, you learned how to perform various text formatting techniques in the Field Calculator.
The Field Calculator allows you to perform a variety of math functions as well. Python has many
math expressions built in, such as adding, subtracting, multiplying, dividing, exponentials, and square
roots, but Python also has a math module that can be imported to add higher-level math operators.
This scenario uses simple math operators, but you can explore other Python code references for
more options.

Scenario

The city engineer is preparing to do a flow rate study on the sewer system data. It is a gravity flow
system, and the flow rate in gallons per minute (gpm) of wastewater must be calculated for each pipe
size. In addition, she wants you to include a drag coefficient for the different pipe materials because
some types of pipe are not flowing at the optimum rate due to friction or buildup in the pipes.
Because you do not know the slope of the pipes, calculate the flow rate assuming a 1 percent grade,
and she can calculate a more accurate flow rate when better slope data is acquired.

Your script must find the pipe size, get the flow rate for that size, and multiply the flow rate by the
drag coefficient of the pipe material. The flow rates are as follows:

4in.=30gpm
6in.=70 gpm
8in.=175gpm
10in. = 280 gpm

12 in. = 410 gpm

Tutorial 1-4 Decision making in the Field Calculator 25

The drag coefficients for the different materials are as follows:

Ductile iron = 0.82

Reinforced concrete = 0.88
Vitrified clay = 0.92

High-density polyethylene = 0.97
Polyvinyl chloride = 0.97

Notice that even the best pipe, with a coefficient of 0.97, does not allow for wastewater to flow at the
maximum rate. Because the pipe must maintain an air gap to allow the wastewater to flow freely, the
maximum theoretical flow rate is never achieved.

Data

The data is the sewer utility data for the City of Oleander. The pipeline database already has an empty
field in which you will calculate the flow rate. In addition, there is a field containing the pipe size

and another one containing a description of the pipe material. A definition query has been applied

to limit the pipe sizes to less than 14 inches to save time typing a lot of code. In reality, this process
would be done on the entire dataset.

SCRIPTING TECHNIQUES

The first few tutorials used various Python controls to manipulate strings, but there
are just as many available for mathematical functions. The common controls are
addition (+), subtraction (-), multiplication (*), and division (/), but a variety of more
complex functions exist, such as exponentials and square roots. A double-asterisk
(**) operator is used for an exponential, so 2 to the power of 4 would be 2**4. Seven
squared would be 7**2 (seven to the second power).

Python also has a separate math module that can be referenced from your scripts to
do more scientific calculations, but these calculations are not addressed here.

Make decisions in the Field Calculator

1. Try writing your pseudo code for this project on your own before referring to the description shown:

cet the pipe size and pipe moteriol from the dotabose
Use the pipe size to determine the correct flow rote
Find owt the pipe material

Perform the colcularicon

This pseudo code shows a general outline of the process.

26

2.

3.

Chapter 1 Using Python in labeling and field calculations

Think about each of these steps, and determine what type of Python scripting you may have to
write to accomplish the goal, and add that description to the pseudo code. You can be more
specific in this step because the next step requires writing the actual code.

(2]
m

the pipe size and pipe material from the dotabase.
ine a fi
Field Calculator.
wo variables to hold these values.
e size to determine the correct flow rate.
n if statement to determine the pipe size.
e will be an if,
the pipe material.

s
=]
g
+
i)
3

rt m

=]
m m
[~}

3. Nest an if statement in the pipe size if statement to se

drag coefficient.
There will be an if,
Perform the calculation.

unction to bring the fields PSIZE and MATERIAL

then an elif for each pipe size in &

then an elif for each material type.

h

m

4. Perform the calculation, and store the result in a variable.

EEE
n
-
5
=Y

and set the field value.

Use a return statement to send the results back to the function

Start ArcMap, and open the map document Tutorial 1-4. This is the sewer utility data for
Oleander, zoomed in on a small area. Open the attribute table for the Sewer Lines layer, and note
the fields in the table that you will be using in this process.

Table O x
EH-B-

Sewger Lines x
PSIZE MATERIAL Year of Construction| Comments | Shape_Length FlowRate GPM -
E" | Ductile Iron 1992 | Oleander 5527382 | =hull= |_|

g" | Ductile Iran 18969 | Cleander F39.713842 | =Mull=

6" | Ductile Iran 1985 | Cleander 166341481 | =hull=

6" | Ductile Iran 18985 | Cleander 71561806 | =Mull=

6" | Ductile Iran 19598 | Cleander 74 754366 | =hull=

10" | Ductile Iron 2006 | Bedford 238.383305 | =Mull=

12" | Ductile Iran 2006 | Oleander 147 635852 | =hull=

g" | Ductile Iran 2006 | Oleander 130.095232 | =Mull=

10" | Ductile Iran 2008 | Oleander 2ME.581243 | =hull=

10" | Ductile Iran 2009 | Oleander J6.1967T | =hlull=

12" | High Density Polyethelens 2009 | Oleander 409401769 | =hull=

12" | High Density Polyethelens 2009 | Oleander 304057045 | =hull=

8" | High Density Polyethelenes 2009 | Oleander 257 B4T2E3 | =hull=

12" | High Density Polyethelens 2002 | Oleander 200836189 | =Mull=

12" | High Density Polyethelens 2002 | Oleander 93713169 | =hull=

21" | High Density Polyethelens 2002 | Oleander F5.267902 | =Mull=

8" | High Density Polyethelenes 2010 | Oleander 207 353537 | =hull=

§" | High Density Paolyethelene 2010 | Oleander FITE.450221 | =hNull=

8" | High Density Polyethelenes 2010 | Oleander 272062532 | =hull=

§" | High Density Paolyethelene 2010 | Oleander 125.950094 | =hull=

8" | High Density Polyethelenes 2010 | Oleander 501 22632 | =hull=

§" | High Density Paolyethelene 2010 | Oleander 160566632 | =hull=
8" | High Density Polyethelenes 2010 | Oleander 173612591 | =hull= 57

o4 0w E {0 out of 4218 Selected)

Tutorial 1-4 Decision making in the Field Calculator 27

Right-click the FlowRateGPM field, and open the Field Calculator dialog box. Click the settings
to allow for the entry of Python code, and define a function to accept Python code as described
in step 1 of your pseudo code. Refer to tutorial 1-3 for a reminder of how to do this. The function
should pass the PSIZE and MATERIAL fields to the code block (in each step, try out your own
code before referring to the graphics).

Field Calculator

Parser
WE Scripk @) Python

Figlds:

PSIZE
MATERIAL
Year_Const
Comments
Shape_Length
FlowsR abeicPM

| Showy Codeblock,
Pre-Logic Script Code:

Tyvpe: Functions:
.conjugatel) i
@) Murmber ,denaminator)
; Jmag(}) 3
Skring .numeratorf
Bat reall)
ate .as_integer_ratiol)
[frombes ()
e
Ji5_inkeger()

math.acos()
math,acoshi)
math.asing } -

def FrFlow(pipesize, pipeMaterial):

F

FlowR.ateGPM =
FrFlgwl IPSIZE!, IMATERIALD

About caloulating Fields

Clear | | Load

| | SAWE... |

| o

l | Cancel |

Construct the if statement as outlined in step 2 of your pseudo code. Lay out the entire structure
to determine pipe size before thinking about the steps to find the pipe material. Remember

to control your indentations. The return statements return a blank value and are here just as
placeholders. Note: The displays of code shown in the graphic are from an IDE for legibility. You
may want to develop this code in an IDE or text editor, and copy it to the Field Calculator when

you are done.

def fnFlow{pipetize,pipeMaterial):

if pipeSize == 4:
return "™

elif pipeSize == A:
return "¢

elif pipesize ==
return "

elif pipesize == 1@:
return "™

elif pipeSize == 12:
return "¢

28 Chapter 1 Using Python in labeling and field calculations

6. Moveon to step 3 of the pseudo code, and add the nested if statement to determine material
type. The if and elif statements are indented two spaces from the pipe size condition statement.

def fnFlow(pipesize,pipeMaterial):

if pipesize == 4:

if pipeMaterial[@] == "H":
return "

elif pipeMaterial[@] == "D":
return "

elif pipeMaterial[@] == "P":
return "

elif pipeMaterial[@] == "R":
return M

else:
return "

elif pipetizre == &:

Note the use of the slice function to get the first letter of each description in the if statement. This
function keeps you from having to type the entire description, but make sure that when you use this
function you are producing a unique value for each if statement. Although only one set of condition
statements for pipe materials is shown, these statements need to occur for each pipe size.

7. Finally, you must construct the calculation, and add it for each condition. Note: only part of the
final script is shown in the graphic.

def fnFlow(pipesize,pipeMaterial):
if pipesize ==
if pipeMaterial[@] == "H":
return 3@ * 8,95
elif pipeMaterial[@] == "0":
return 3@ * @.82
elif pipeMaterial[@] == "FP":
return 32 * 2,95
elif pipeMaterial[@] == "R":
return 3@ * 2,88
else:
return 3@ * 8,98
elif pipesize == &:
if pipeMaterial[@] == "H":
return 7@ * 2,95
elif pipeMaterial[@] == "D":
return 7@ * @.82
elif pipeMaterial[@] == "P":
return 78 ¥ 8,95
elif pipeMaterial[@] == "R":
return 72 * @, 88
else:
return 7@ * 2,92
elif pipesize == &:

1f pipeMaterial[@] == "H":
return 175 * 2,95

elif pipeMaterial[@] == "D":
return 175 * @.82

elif pipeMaterial[@] == "P":

return 175 * .55
=11t ninedateriallal == "R":

Tutorial 1-4 Decision making in the Field Calculator

29

Once you have the entire script in the Field Calculator code box, click Save, and save to your

MyExercises folder.

-

Q Save As @
Savein: . MyExercises - @ ? -2 E" | {b
== MName . Date modified Type
ke | MyAnswers.gdb 1/17/2014 9:22 AM File folder
RecentPlaces |} 5cratch 1/17/20149:22 AM File folder
! |7 Tutorial 1-3 1/17/2014 5:41 PM CAL File
. 7 Tutorial 1-4 1/17/2014 9:23 PM CAL File

Desktop

| 1 | 1
._|:I=|J

Libraries File name: Tutorial 1-4

-

b

Save

_P.LL Save as type: [Expressions

d

[Cancel]

Click OK to run the code, and see the results calculated into the field. (Hint: make sure Python is
still selected as the parser in the Field Calculator dialog box—it sometimes resets to the default of

VB Script.)
Tahle O x
SRR -3
Sewver Lines X
PSIZE MATERIAL Year of Constructionf Comments | Shape_Length FlowRateGPM -
E" | Palyviny| Chioride 1983 | Oleander 365.399449 BE.5
8" | Polyviny| Chlorice 2001 | Oleander 292 776412 16625 |
8" | Polyviny! Chlorice 1987 | Oleander 245 540816 18625 |||
8" | Polyviny| Chlorice 1987 | Oleander 132 436617 166.25
10" | Polywiney! Chiorice 1985 | Oleander 360.2645 266
10" | Palyviny! Chloride 1985 | Oleander 423 856216 266
B" | Witrified Clay 1976 | Oleander 166.014692 63
g | Witrified Clay 1976 | Oleander 282 695406 157 .5
g" | Yitrified Clay 1976 | Oleander 6501349 1575
E" | Palywinyl Chioride 19582 | Oleander 442 345752 BE.5
E" | Palyviny| Chioride 1982 | Oleander 395126318 BE.5
E" | Palywinyl Chioride 19582 | Oleander 287 BE2042 BE.5
E" | Palyviny| Chioride 1982 | Oleander 345042553 BE.5
E" | Palywinyl Chioride 19582 | Oleander 309179108 BE.5
E" | Palyviny| Chioride 1983 | Oleander 715.518567 BE.5
E" | Palywinyl Chioride 1983 | Oleander 503175849 BE.5
E" | Palyviny| Chioride 1983 | Oleander 296 967596 BE.5
E" | Palywinyl Chioride 19582 | Oleander 401 120001 BE.5
E" | Palyviny| Chioride 1983 | Oleander 450576752 BE.5
12" | High Density Polyethelene 2007 | Oleander 283.393097 3595
E" | Palyviny| Chioride 1982 | Oleander 11514581 BE.5
E" | Palywinyl Chioride 1983 | Oleander 33216959 BE.5
8" | Polyviny! Chlorice 1985 | Oleander 267 353564 16625 | =
TR I E (0 out of 3969 Selected)
Sewver Lines

If your code is not running correctly, double-check the variable names, the indentations, the colons,
and so on. For long, complex scripts like this one, you can do them in your IDE, which checks syntax
as you go, and then copy and paste the final script to the Field Calculator code box.

30 Chapter 1 Using Python in labeling and field calculations

Exercise 1-4

The city engineer has a similar project using the water line data. Open the map document
Exercise 1-4 and look at the attribute table for the Distribution Laterals layer. Use the fields PSIZE,
PTYPE (for material), and Shape_Length to calculate the desired use factor.

The formula is PSIZE * Shape_Length * Material Coefficient, using the material coefficients from the
following table:

For pipes 6 in. or less For pipes 8 in. or larger
Asbestos concrete 80 95
Castiron 60 75
Polyvinyl chloride 90 105

Write pseudo code to determine the process. Then use the Field Calculator to complete the process,
and place the answer in the DiamLengthPressure field.

Tutorial 1-4 review

Working in the Field Calculator is unique because it lets you do a series of checks and calculations on
a per-feature or per-row basis. Each feature is evaluated individually. To do this in stand-alone Python
scripts, you use a cursor, which you will learn about later, so the Field Calculator is like an automatic
cursor.

There are limitations to the Field Calculator, however. Although you can bring a number of field
values from the current feature class into the script, you can only deal with one output field at a
time—and for that matter, only one feature class or one table at a time. In a full Python script, you
can control any number of field values, feature classes, or tables simultaneously and send output to
other fields, other feature classes and tables, or even files outside ArcGlS.

Study questions

1. If you have a feature class with property values (Tot_Value) and a separate feature class
with lot size (Acreage), could you write a script to calculate the value per acre using the
Field Calculator? Write the script (if you think you can do it).

2. You need to calculate a property drainage coefficient based on lot size (Acreage), land use
(Use_Code), an impervious area (Imperv_Area), and soil type (Dirt_Type). If all these fields
are in the same feature class, can they all be used in the Field Calculator? Write the code
to bring all these fields into the Field Calculator dialog box (if you think you can do it).

3. Name three things to watch for when nesting if statements.

Tutorial 1-5 Working with Python date formats 31

Tutorial -5 Working with Python date
formats

Dates are a complex item in any programming language, but Python makes using them easy. Basic
formatting techniques are used to extract and manipulate data information.

Learning objectives
« Using Python date directives
+ Working with date information

+ Building complex Python objects

Preparation
Research the following topic in ArcGIS for Desktop Help:

« “Fundamentals of date fields”

Introduction

As you have seen in tutorials 1-3 and 1-4, complex calculations can be made in the Field Calculator
using Python directives and if condition statements. One type of calculation that causes concern
among programmers is performing date calculations because the fields that hold the dates are not
standard fields, and they are not structured on a base 10 calculation like common numbers. A date
field is a special type of field that can contain the day, month, year, and time of day in a variety of
formats, which means that a standard Python variable is not able to contain the data. Instead, you
must use a Python date object. In using the date object, make sure to specify the date components
as they are brought into the object so that they can be retrieved as needed.

You also must pay attention to the time field. Merely subtracting the time values will not produce
the desired results. The hours, minutes, and seconds must be calculated separately, and at the same
time, you must also be aware of the scenario covering multiple days.

Scenario

The fire chief has provided you with the calls for service data for the past year and wants you to
calculate the elapsed time between the dispatch time and the time that the vehicle arrived on the
scene in decimal minutes. Any call that exceeds five minutes will need to be investigated. Although
this sounds simple, it can be one of the more complex functions to perform.

32 Chapter 1 Using Python in labeling and field calculations

Data

The calls for service data has the fields dispatched and arrived, which represent the time the vehicle
left the station and the time it arrived on the scene.

SCRIPTING TECHNIQUES

Remember that variables typically hold a single value, but objects can hold multiple
values. The list objects that you used earlier are a good example of objects with
multiple values. The key to working with objects is to understand the format of
what the object holds and how to access it. As the book progresses, you will see
more examples of objects and how to research their structure.

Date objects can actually hold both date and time, or date only or time only, so
particular care must be taken to assess the values in the object before deciding how
to process them. Once this is done, identify each of the components using a format
code called a date directive. The following list of directives will help you decide how
to format the date object:

® %a = abbreviated weekday name

* %A = full weekday name

e %b = abbreviated month name

® %B = full month name

® %c = preferred date and time representation

® %C = century number (the year divided by 100, range 00 to 99)

* %d = day of the month (01 to 31)

® %D = same as %m/%d/%y

* %g = like %G, but without the century

* %G = four-digit year corresponding to the ISO week number (see %V)

® %h = same as %b

e %H = hour, using a 24-hour clock (00 to 23)

e %l = hour, using a 12-hour clock (01 to 12)

® %j = day of the year (001 to 366)

* %m = month (01 to 12)

® %M = minute

® %n = add a new line

® %p = either a.m. or p.m., according to the given time value

® %r = time in a.m. and p.m. notation

® %R = time in 24-hour notation

® %S = second

® %t = Tab character

Tutorial 1-5 Working with Python date formats

® %T = current time, equal to %H:%M:%S

* %u = weekday as a number (1 to 7), where Monday = 1 (Warning: in the Sun
Solaris operating system, Sunday = 1.)

* %U = week number of the current year, starting with the first Sunday as the
first day of the first week

® %V = the ISO 8601 week number of the current year (01 to 53), where week
one is the first week that has at least four days in the current year, and with
Monday as the first day of the week

* %W = week number of the current year, starting with the first Monday as the
first day of the first week

* %w = day of the week as a decimal, where Sunday = 0

* %x = preferred date representation without the time

* %X = preferred time representation without the date

® %y = year without a century (range 00 to 99)

® %Y = year including the century

® %Z or %z = time zone or name or abbreviation

® %% = a literal % character

You must use the Python DateTime module to correctly use the date object. This
is a standard Python module that contains specialized functions and methods for
working specifically with date information. The syntax is to add “from datetime
import datetime” at the beginning of your code. This syntax brings in the date
and time functions you will use in the calculations. For example, the date string
“10/25/2012” would use the format string “%m/%d/%Y".

The DateTime module also includes special functions to perform math on
dates. Simple subtraction of dates using the standard Python math functions
could produce incorrect results. Imagine a call for service that started at

11:58 a.m. and ended four minutes later at 12:02 p.m. Performing a simple
subtraction of these values would produce a negative number. The same would
be true of a call that occurred just before midnight and ran into the next day.
But once the values in the fields are put into date objects, subtracting them
produces a time delta object. The function total_seconds() can be used to
extract a value into a numeric variable, and dividing this by 60 converts the
value to minutes.

Handling time is also tricky. Seconds and minutes are on a base 60 system, with
hours being on a base 12 system, or a base 24 system for military time. You
determine the base when you format the Python object. The directives handle
almost any combination, but make sure you match them to the data carefully. This
will ensure success with your code.

33

34

Work with the Python DateTime module

1.

Chapter 1 Using Python in labeling and field calculations

Open the map document Tutorial 1-5. In the table of contents, click the List By Source button,
and open the table Calls_for_service_2012. Note the fields that you are working with.

Tkl *x
LR RLL

RS e ‘

©_Type 1 srrorcd e | Dvap il wsrcn] - rere | [
|| A iy birvoode TR AN 4T N A - Al F aiee (Rl e FLE T [P FEs T Lt o
[| e Carbeon Moroade | VIR S AT P | A3 - A P (Bt i 120 0T 0T P T 2 G R VO Tenae
= £l CalMoicsl Ervrgnndy TN 10 A P _r.'-m"- Hospla Brandecr _'JI' TAEKNTE S B WSS P _IH'D'I'W i “: 1'! "™ _l‘.'l.ll
|| B Colecien Emergarey | 1200001 2101001 M| F2 - WS Hospde Frantpent it 200G 0O SE P VNN 2 0 P i
L] Fire Call Snaiis iy [Cubinde) _'.'.'.'II.':TII:.' LA AT AN F2 .70 Deigsadd Reh 1o Ol _'\III I.'J.'IZ!.I:IIE'.'.' SR8 A | IJ!"I:JAH:‘ JFI:\'.'J‘A.II _-&I.b-
- Fire Cal-Sewiid e [Caiiscke) _1."!.!-':‘.".'15-‘5-'“ F 3 - FIF Chitiid Rat-E00S Cll n I%l"’.l:ﬂ.l‘}}l’.:'\-.ll.ﬂl 1IN0 2 X VB2 A l'-".ll
TG Calbiadcnl Prargercy | 42000 3 11 7 &5 PR F2 « PlE5 Fioapd sl Tiwnegcs] Fiskd CGarerabat Col | 1 22A004T 1937 B VIR0 11 2 P FTr
WL T e e——— . F2 - B Hoopd el "rarigd Fuiel Gorwratpd Col | T2CEMCKINE 10 T4 i TN 2 11 2 i) e o
|| Five Cad-Cooa sl < Gt | vt F |72 - FI Déneaesd ion OVG sl |11 RE L EE T] TR 2 G TP T
L] Fuw Call.Ciaa Loidk . Cofinie Forp el B N) _r| FUr Dot Kion FaE Ol _'\Ill 1:D¢'|_l'.'||!':|l 1058 P |;|-'n.r::|;'_|._:_1._;nm _!'.ll.trl
| s Fire Freaiere NDCOCTIT LTS P | A1 - Al Fals (Securalri) | Preve Onl V2CEROTH 2 450 P VIR0 2 0006 P s
|| bt Cmbibteciond fmargercy | 12GUGIUT 11 S4 8T AN | FJ < DS rioopem Eranmpon Ll 1209004 11 AS 1) A LRI A1 A A s
= Bl Cal-Maonl Exiergatyy IS Y &E K2 AN _"i Bl Hoapl e Frrcson] ne Im?l"lb"?m VIR D 11T A _m
[| M. Clbsciond Dmargercy 7 - G Mgl Transgor ath VRGO 7§ 800 PRl PRICACAT ¥ B P T

[TH] 0oroH S W e el 0 Seecind)

T far_Saresr i1l

Notice the format of the date. The fields have the following structure:
+ Month shown as two digits followed by a slash
« Day of the month shown as two digits followed by a slash
« Year shown as four digits followed by a space
« Hour in base 12 shown as one or two digits followed by a colon
« Minutes in base 60 shown as two digits followed by a colon
+ Seconds in base 60 shown as two digits followed by a space

« AM and PM shown as two uppercase characters to determine morning or afternoon, respectively

The key to working with dates is to select the correct formatting string during the object assignment.
Use the function .strptime() with the syntax strptime(date, format) where date is the date string you
are bringing in from ArcMap, and format is the Python directive to identify each component of the
date.

Write the general and detailed pseudo code necessary to calculate the elapsed time. Include
the date string formatting directives to accept the data from the calls for service table. Use the
preceding list in “Scripting techniques” to determine which directives to use. (As usual, try to
write the complete pseudo code for each step before comparing your results with the graphics).

Get the date fields from ArcMap.
1. Define a function to bring the fields "dispatched” and "arrived”
into the Field Calculator.
Create two variables to hold these values.
Format the strings into Python date objects.
2. Select the correct directives for the daote.
Em/Rd/ /Ry EI:EM:%S Xp
Subtract the dates.
3. Subtract the formatted dote objects te create g time delta object.
Output the results in decimal minutes.
4. Use the total seconds() function, and divide the results by 68.
Use round() to round the results to two decimal ploces.

R TR R R R R R

3.

Tutorial 1-5 Working with Python date formats

35

Right-click the ElapsedTime field, and open the Field Calculator dialog box. Enter the code to set

up the function, and bring in the necessary fields.

Pre-Logic Script Code:

def fmElapsed(dispTime arrTime): -

] 1 P
ElapsedTime =

fnElapsed(|dispatched!, 'arrived!) -

Add the code to format the date string. Import the Python date-handling method, and then
create a Python object with the correct date format, as shown:

def fnElapsed{dispTime,arrTime):
from datetime import datetime
dateDispatch = datetime.strptime(dispTime, "%m/%e /&y EI: %5 ¥p")
dateArrive = datetime.strptime(arrTime, "%m/%e/ %y XI:3M:¥5 Xp™)

The date subtraction is next. The calculation must accommodate the possibility of a time that
bridges the day or the morning to afternoon break. Subtracting the two date objects will result in
a time delta object, which is designed to automatically accommodate the time changes. The time

delta object holds the elapsed time in seconds and is retrieved using the total_seconds() function.

When divided by 60, the result is the total elapsed time in decimal minutes.
Write your version of the code to perform the date subtraction and compare it to this:

def fnElapsed(dispTime,arrTime):
+ from datetime import datetime
+ dateDispatch = datetime.strptime(dispTime, "%m/%d/ /%y ¥ 325 Ep")
+ dateArrive = datetime.strptime(arrTime,"¥m/%d/%Y HL:3M:%5 ¥p")
+ timeDiff = datedrrive - dateDispatch
+ elapMin = timeDiff.total_seconds()/58
+ return round(elapMin,2)

36

Chapter 1 Using Python in labeling and field calculations

6. Add the return statement, and send the results back to the table. Click OK to see the results.

By sorting the field in descending order, you can quickly see which calls exceeded the required

response time.

Tahle
H- 15 e
Calls_for_service_ 2012
Dispo call_source dispatched arrived EEW
F2 - EMS Hospital Transpaort Phone Call G 452012 4:45:25 P BM 452012 52116 PM 35.69
F3 - FDr Disposed Mon-EMS Call Phone Call SI2352012 4:25:00 P 9r2352012 4:558:51 PM 34.65
F3 - FDr Disposed Mon-EMS Call Phone Call 912412012 9:57:00 AM 9242012 10:30:27 AM 33.45
F3 - FDr Disposed Mon-EMS Call Phone Call 121452012 3:47:31 PW 121402012 4:20:46 Phl 33.25
F3 - FDr Disposed Mon-EMS Call Field Generated Call 3052012 94833 AM Br30/2012 10:20:57 AM 324
F1 - EMS Mo Hospital Transport 91 SMTI2012 94622 AM SMTR20121017:42 AM 31.33333
F3 - FDr Disposed Mon-EMS Call Phone Call 103172012 7:50: 35 P 0312012 5:21:533 P 30.91667
F2 - EMS Hospital Transpaort 91 SM12012 34212 AM SM12012 4:12:49 AM 30.61667
F3 - FDr Disposed Mon-EMS Call Phone Call GA57201 2 6:26:54 P Br502012 6:36:42 PM 29.8
F3 - FDr Disposed Mon-EMS Call Field Generated Call 3095201 2 2:06:24 P 3002012 2:356:06 P 297
F3 - FDr Disposed Mon-EMS Call Phone Call 1003002012 3:07:30 A 1003002012 3:35:00 AM 275
F3 - FDr Disposed Mon-EMS Call Phone Call SI25201 2 9:55:30 P Br201210:25:14 P 2673353
A5 - Alarm Falze (ResiOcc) 91 3M 32012 21623 P 3M 32012 2:42:55 PM 2653353
F3 - FDr Disposed Mon-EMS Call Phone Call GM352012 4:52:33 PM BM 32012 51723 PM 24 53333
F2 - EMS Hospital Transpaort 91 10352012 6:06:41 Ph 0032012 6:31:11 P 245
A5 - Alarm Falze (ResiOcc) Phone Call 100 202012 71627 A 00202012 740354 AM 24 11667
F3 - FDr Disposed Mon-EMS Call 91 DI2TI20M2 92617 AM SI27I2012 9:50:24 AM 24 11667
F2 - EMS Hospital Transpaort Phone Call SM12012 1219:00 A SM12012 1243502 AM 24 03333
A2 - Alarm Falze (UnsecMSFE) Phone Call 1097201 2 5:01:24 AM 10802012 5:24:55 AM 23.51667
F2 - EMS Hospital Transpaort Phone Call SM1R2012 121952 AM SM12012 124301 AM 23483533
F3 - FDr Disposed Mon-EMS Call 91 AI57201 2 9:35:27 P 40602012 9:55:43 P 2326667
F3 - FDr Disposed Mon-EMS Call Phone Call 42212012 3:09:37 AM 412202012 33202 AM 22 08333

F2 - FM= Hnznital Transonrt

‘ (Y E {0 aut of 2022 Selected)

11

AN 2 5 49 00 Ak

AN 2 81100 Ak

2

Dates can be problematic, but this example should help you understand how to do a variety of date

calculations. The key is to use the correct directive when formatting the Python date object.

Exercise 1-5

Open the map document Exercise 1-5. Perform the same elapsed-time calculations on the Calls_for_

service_2010 data. Notice that the date and time data are in separate fields.

Write the pseudo code first to determine which directives are necessary to create the Python date

objects.

Write the code in the Field Calculator, and store the results in the ElapsedTime field.

Tutorial 1-5 review

The examples in this tutorial cover how to properly format dates as input and place them into

variables. Then these variables were used for calculations. The key to working with dates is to know
the date format of the input value. Some date fields contain the full range of information, including

date and time. Other fields may have only the date, and yet others may have only the time.

Tutorial 1-5 Working with Python date formats 37

The date directives listed at the start of this tutorial also handle the formatting of output dates. For
instance, you could format a date into a Python date object and print the corresponding day of the
week using %u or the corresponding week of the year using %U or %W (depending on whether you
start your week on Sunday or Monday).

Study questions
1. Research the date handlers in your Python reference book, and list the function to get
today’s date.

2. What format directives would you use on this date string: 31 12 2013 23:59:59 (New Year’s
Eve in London)?

3. What format directive would you use to give the full weekday name?

