
Spatial Statistical Data Analysis for GIS Users    18 

 
 

CHAPTER 1 

STATISTICAL APPROACH  
TO GIS DATA ANALYSIS 

SPATIAL ANALYSIS AND SPATIAL DATA ANALYSIS 
TYPES OF SPATIAL DATA AND RELATED STATISTICAL MODELS 
SPATIAL DATA DEPENDENCY 
DISTANCE BETWEEN GEOGRAPHIC OBJECTS 
AN EXAMPLE OF STATISTICAL SMOOTHING OF REGIONAL DATA 
ASSIGNMENT 

INVESTIGATE HOW A SEMIVARIOGRAM CAN CAPTURE SPATIAL 
DEPENDENCE 

FURTHER READING 

 

his chapter begins with a discussion of the difference between deterministic and statistical spatial data 
analysis. Definitions are given, and an example of modeling radiocesium soil contamination data with 
measurement errors is presented. 

Spatial statistical models are classified into geostatistical, regional, and point pattern models. They correspond to 
the data classified by their locations into continuous, regional, and discrete types. There are four types of data 
values that can be associated with any spatial statistical model: continuous, ordinal, categorical, and binary. 
Continuous means that data values come from the real number line. Ordinal means that they are in discrete 
categories, and the order of those categories is meaningful; for example, small, medium, and large. Categorical 
means that data values are in discrete categories, and order is not meaningful; for example, red, yellow, and green. 
Binary data take either the value 0 or 1. In this book, we usually use the word “continuous” when describing data 
locations, not data values. 

T 
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The differences in modeling assumptions for each data type are briefly discussed, and an example is given of data 
(lightning strike locations) that can be modeled using any of the three types of spatial statistical models. 

Spatial data dependency is a common feature of any spatial statistical model. The importance of modeling the 
extent of spatial dependency is illustrated using simulated data. 

Spatial data dependency is based on the distance between spatial objects, but distance is not necessarily related to 
the length of a line connecting any two objects. Several examples illustrate the problem of selecting the 
appropriate measure of distance between spatial objects. 

The chapter ends with an example of regional data visualization problems using family size data in counties of the 
United States. 

An addendum to the chapter illustrates how spatial dependence is estimated and used in geostatistics for 
prediction to the unsampled locations. 

Many readers begin a book at chapter 1, skipping the preface. We suggest reading the preface before this chapter 
because it provides additional motivation for studying and using spatial statistics. 

SPATIAL ANALYSIS AND SPATIAL DATA ANALYSIS 

The use of GIS functionality to understand and interpret spatial information is called spatial analysis. GIS tools are 
powerful, and the results they return are often so visually impressive that it is easy to lose sight of something that 
everyone knows at some level, namely, that most datasets have errors both in attributes and in locations, and that 
processing data—with overlay, buffering, and the like—propagates errors. Much of the current progress in GIS 
consists of providing open and consistent database support and making it easier to construct maps. If there is a 
need to test hypotheses and to make predictions in fields such as agriculture, epidemiology, or hydrology, it is also 
necessary to be informed about the uncertainty of these tests and predictions in order to fully understand the 
decisions that can be made using the results of the analysis. 

Spatial data analysis uses statistical theory and software to analyze data with location coordinates. Nonstatistical 
models (often called deterministic) postulate data relationships by the imposition of a priori models, whereas 
statistical models estimate the model parameters from the data at hand. For example, inverse distance weighted 
(IDW) interpolation is a deterministic model because the dependence between pairs of values is defined simply by 
the distance between data locations raised to a predefined power value. This model has been applied to fields as 
diverse as air pollution, meteorology, and the study of plant nutrient distributions in soils. The main shortcomings 
of deterministic models are the arbitrariness of the postulated spatial data similarity and the absence of 
information on their prediction uncertainties. 

Kriging is a statistical model because it infers the dependence between pairs of points from examination of all 
similarly distant pairs in the data. This allows calculation of averages and their associated properties along with an 
estimate of the uncertainty of the prediction. The parameters of the kriging model are different for any two 
different datasets. 

A GIS provides (1) spatial data management, (2) mapping, (3) spatial data analysis, and (4) decision-making 
assistance. A GIS has outstanding tools for the first two and parts of the latter two. ArcGIS Geostatistical Analyst is 
a spatial data analysis program, an extension to Esri ArcGIS software developed to integrate GIS data management 
and mapping capabilities with statistical modeling of spatially continuous data such as temperature and 
elevation—data for which Tobler’s first law of geography applies: “Everything is related to everything else, but 
near things are more related than distant things.” Incorporating spatial statistical modeling into the GIS 
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environment is natural because GIS tools describe things over distance, while statistics can explain how these same 
things change and interrelate. With the addition of statistical methods, GIS is enhanced with key tools for decision 
support and evaluating the uncertainty associated with those decisions. 

Statistics is not the only tool for decision making, but much of statistics is concerned with quantifying uncertainty. 
Making decisions requires managing risk, and this, in turn, requires understanding uncertainty. Integration of 1 
through 4 above provides scientists and managers with an inclusive environment in which data are managed, 
models are constructed, and prediction uncertainty is made explicit. 

In Belarus, after the Chernobyl accident in 1986, decisions had to be made quickly about whom to evacuate. The 
maximum permissible exposure was considered one millisievert per year. The amount of exposure is not important 
for our purposes here, only that there is a measurable threshold. The decision to evacuate had to proceed in the 
face of two types of uncertainty: uncertainty about the quality of the data and uncertainty about the model of the 
various processes through which the data was run to get results. 

In the years since the accident, territory zoning has been based on the available experimental data: 

 Direct measurements of the dose accumulated in a person, or 

 If the individual dose is unavailable, dose estimation from radioactive food contamination, or 

 If irradiation from eating contaminated food cannot be calculated, the level of radioactive contamination 
of soil with cesium-137, strontium-90, and actinoids 

Decision making based on individual doses is the easiest because the data uncertainty is small.  

Several elements go into the calculation of dose: contamination of food and characteristics of a person’s daily diet, 
age, and body weight. Each of these is necessarily an average. Not every person weighs the same, nor does 
everyone eat the same amount of the same food. Contamination varies from place to place and from foodstuff to 
foodstuff. Calculations (see chapter 3) show that uncertainty of the dose based on the data collected in one of the 
villages is 47 percent, uncertainty of intake (average daily diet plus average contamination) is 42 percent, and 
uncertainty of weight is 21 percent. Such a great amount of uncertainty makes identifying which areas to evacuate 
a difficult task. It is no small effort (or expense) to evacuate people, and there is significant risk in leaving people in 
dangerous areas. 

In practice, threshold values of soil contamination were used in zoning instead of the dose measuring or 
calculation, since soil samples are much easier to collect than doses are to measure or calculate. The adopted 
thresholds are the calculated effective values of soil contamination that are believed to correspond to some critical 
values of the individual dose. Although measurements of the radionuclide soil contamination are considered 
accurate, the uncertainty of such territory zoning for the purpose of the dose control is large. The major source of 
uncertainty is concealed in the coefficient of correlation between the dose and the soil contamination. Another 
component of uncertainty is that of the measurements of soil contamination themselves. 

Filtered prediction is one of many methods of measuring data quality and accounting for uncertainties. This 
method improves decisions in one area by using information from other areas. The map in figure 1.1 shows the 
locations of settlements close to Chernobyl, along with numbers representing each settlement's level of 
radiocesium soil contamination in curies per square kilometer (Ci/km2). The upper permissible limit is 15. The error 
of radioactive soil contamination measurements is about 20 percent, and two circled settlements are close to the 
upper permissible level limit. When information from other settlements is used to predict the level of 
contamination at the two circled settlements, the one measured at 14.56 Ci/km2 is predicted to be 17.05 Ci/km2, 
and the one marked 15.45 is predicted to be 16.88. According to the kriging model with a measurement error 
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component, their true contamination values are in the intervals 14.2–19.9 and 13.8–20.0. Thus, both settlements 
are rather unsafe, and people living in and around them should probably be evacuated. 

 
Figure 1.1 

In the Chernobyl example, it is evident that the data were uncertain, both in the accuracy of the measurements 
themselves and in the prediction of the values at the unsampled locations. Similarly, much spatial data contains 
errors in both attribute values and locations because extremely precise measurements are very costly or 
impractical to obtain. Although this should not limit the use of the data for decision making, neither should it give 
the decision maker the false impression that maps based on such data are exact. 

In summary, a model is an approximation of reality, both incomplete and imperfect. The data from which models 
are made is a sampling of reality, also incomplete and imperfect. To use models intelligently, their limitations must 
be recognized. Where is the error? How much of it is there? How much is too much? Only with answers to these 
questions can uncertain data be used and models incorporating that uncertainty be created and understood to 
make sensible and reliable decisions. 

The statistical methods covered in this book provide objective tools for measuring data quality, accounting for the 
inevitable errors and uncertainties involved in mapping, assessing spatial patterns, and even deciding whether 
what seems to be a pattern is in fact a pattern. Humans are good at seeing patterns, even where there are not any. 
Just think how easy it is for people to see faces everywhere—in rocks, in clouds, in the moon. 

TYPES OF SPATIAL DATA AND RELATED STATISTICAL MODELS 

There are three broad groups of spatial data classified according to their locations: discrete, continuous, and 
regional. All are illustrated in figure 1.2. 

Discrete data are isolated on the earth’s surface, for example, tree locations, which cannot be found at every 
point. Continuous data exist at every point (e.g., elevation), but they are measured in a finite number of locations. 
Regional data are taken collectively or in summary form; for example, the incidence of a particular cancer in the 
United States. 

Courtesy of International Sakharov Environmental University, Minsk, Belarus; Institution of Radiation Safety, Belrad, Republic of Belarus. 
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Figure 1.2 

Statistical models for discrete, continuous, and regional data are different. In statistical literature, modeling of 
discrete point data is called point pattern analysis, modeling of spatially continuous data is called geostatistics, and 
modeling of regional data is called lattice analysis. Applying tools developed for continuous data to data that are 
discrete or regional will produce anomalous results. This may not be immediately obvious, for nothing in those 
results will necessarily announce that there are anomalies. 

For example, locations of lightning strikes on one particular day are displayed in figure 1.3. The red circles reflect a 
radius of uncertainty in the location of the strikes. In addition to the approximate data location, there is 
information on the polarity and strength of the lightning strikes. (Positive polarity is more likely to ignite a wildfire.)  

 
Figure 1.3 
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A continuous map of positive-polarity lightning strikes using a statistical interpolation method (kriging) can be 
created and used to indicate the risk of a wildfire. However, this approach does not account for the spatial 
distribution of the lightning strikes. There may be far more strikes with negative polarity, with increased fire risk 
simply because of the number of strikes. More important, prediction of the polarity and strength between 
observation locations is questionable because lightning strikes did not happen between actual strike locations. 

To account for errors in identifying the locations of lightning strikes, polygons can be defined that partition the 
data according to soil and forest types, then the number of lightning strikes can be counted and polarity 
distribution estimated in the polygons. Regional data analysis on such aggregated data would be challenging 
because this requires sophisticated methods for the creation of polygons and their neighborhood selection. 

In spatial statistics, the lightning strike data would be considered as the realization of a marked point pattern 
process, which is a combination of two processes. The first process locates the lightning strikes (a discrete point 
process), while a second process controls the strength and polarity associated with strikes at the recorded 
locations (a continuous process). 

Statistical models for discrete, continuous, and regional data can be employed and visually appealing maps created 
with the lightning strike data, which are discrete by nature. The results of modeling will be different but equally 
appealing, although most likely erroneous, if the geostatistical method is used. 

The analysis of the spatial point pattern usually starts with finding the most similar pattern among those that can 
be generated with known statistical features. A typical goal of statistical analysis of discrete points is estimation of 
the points’ intensity at each location in the study area. The intensity surface can be a function of covariates. For 
example, the density of plants can be a function of the soil properties. 

A model of point pattern intensity can be developed using spatial trend, dependence on spatial covariates, and 
interaction between points of the pattern. Models called marked point processes allow dependence between 
point locations and their associated values. For example, tree location and diameter at breast height could interact 
because trees compete for light and nutrients. 

Geostatistical models (kriging) predict values where no measurements have been taken assuming that data have 
similar statistical properties in any part of the study area. This assumption is called stationarity. More precisely, the 
mean and variance of a variable at one location should be equal to the variable’s mean and variance at other 
locations, and the correlation between data at any two locations should depend only on the direction and 
magnitude of the vector that separates them and not on their exact locations. Stationarity is a property of the 
kriging model; it is not necessarily a feature of the phenomena under study. 

In kriging, data are assumed to be stationary even if there is uncertainty as to what “stationary” means. If 
conventional kriging is used on nonstationary data, such as disease rates (the incidence of disease observed in a 
geographical area per 1,000 or 100,000 persons) in which the data variability (variance) of the rate depends on the 
population, which varies with geographical region, conventional kriging will not return results that can be used 
safely to make decisions because the fundamental model assumption has been violated, and the accuracy of the 
analysis cannot be trusted. 

Statistical models always use some assumptions, and if these assumptions are not fulfilled, decision making based 
on the results of the modeling may be incorrect. Once it is known what assumptions are made by the model, the 
appropriate data can be matched to it or altered to fit the assumptions. This can be done, for example, by 
removing large-scale data variation and transforming data to approximate a theoretical data distribution such as 
Gaussian. 
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For instance, the popular indexes of spatial data association, Moran’s I and Geary’s c, are widely used for analyzing 
rates. However, these indices were derived under the assumption that data mean and variance are constants, a 
condition that hardly applies for rates. Therefore, other measures that more explicitly take into account the 
aggregated nature of the data are to be preferred. 

In contrast to continuous data, regional data are usually observed at every location (that is at every polygon) and 
there is usually no need in interpolation. Researchers working with regional data are typically interested in a way 
of validly presenting a map of counts or rates. One problem with this is that regions with smaller populations may 
have an abnormally high rate simply because there are fewer people in the region. Other typical goals of regional 
data analysis are finding significant clusters, homogeneous groups of regions that vary in similar manner, and 
variables that vary together with the variables of interest (covariates). 

Statistical models for continuous, regional, and discrete data are discussed in chapters 8–13. 

SPATIAL DATA DEPENDENCY 

The applicability of spatial statistics demands that the data be spatially dependent, at least to a certain extent. If 
data are spatially independent, there is no way to predict a data value at an unsampled location with reasonable 
accuracy. If there is data dependency, data contain information about the relationship between values at nearby 
locations. As the dependence on data grows stronger, the prediction uncertainty lessens, and the least amount of 
data will be required for reasonable prediction. In figure 1.4, it would not be difficult to predict the value of one or 
several blue points if they were removed, but prediction of a removed green point is more difficult. The best that 
could be done would be to predict the removed green point within the area bounded by the red lines. 

 
Figure 1.4 

The importance of spatial data dependency in the case of spatial interpolation can be illustrated by using 
deterministic and statistical models implemented in Geostatistical Analyst. 

Fifty data points are displayed in figure 1.5 (left). Using this data, a surface was created using an inverse distance 
weighted interpolation (IDW) with the Geostatistical Analyst’s default parameters. The predictions are plotted in 
figure 1.5 (right).  
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Figure 1.5 

Using the same data, another surface was created using a radial basis function with a thin-plate spline kernel 
(figure 1.6 at left). The surfaces differ, although not greatly. Each surface is the product of different assumptions 
about the relation of data points to each other. These assumptions are not connected in any fundamental way to 
characteristics abstracted from the dataset but are predefined. Thus, the models are deterministic. 

However, the default statistical model, ordinary kriging (figure 1.6 at right), applied to the same data produces a 
very different surface—a noisy, flat surface—unlike the chain of valleys and hills produced by the deterministic 
inverse distance weighted interpolation and the radial basis function models. Is this surface better in some way?  

The relationship between points on the surface produced by ordinary kriging is defined by characteristics drawn 
from the data. All prediction surfaces are not absolutely accurate, but error in the surface produced by ordinary 
kriging can be evaluated. 

  

Figure 1.6 

The cross-validation diagnostics in figure 1.7 compare results for ordinary kriging and IDW. Ordinary kriging 
predictions are preferred over predictions from the IDW model because the prediction mean and root-mean-
square errors are smaller for kriging than for IDW, as is the spread of points around the fitted line. 
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Figure 1.7 
The smooth-looking surfaces created using deterministic interpolation models are less accurate than the rough 
surface produced by ordinary kriging, because the data used in this example are spatially independent. Spatially 
independent data can be produced by a random number generator (as these were), and the points are unrelated 
to each other in the sense that near datum is not more alike than data separated by greater distances. Because the 
data do not contain information about similarity with their neighbors, interpolation is not appropriate. Although 
none of the models can predict values removed from the dataset, kriging produces a surface close to the average 
value of the data. This is the best prediction surface when data are spatially independent. 

Real data are spatially dependent more often than not. If the elevation is 500 feet in one place and 600 feet in 
another, there must be at least one location somewhere in between with an elevation of 550 feet. Spatial data 
dependency is not simply present or absent; it occurs in varying degrees. Spatial statistics provide methods to 
define the extent of spatial data dependency for use in modeling. 

DISTANCE BETWEEN GEOGRAPHIC OBJECTS 

Distance between geographic objects is an important attribute of models in spatial statistics. Specification of 
distances between points will influence the conclusions drawn from data. The terrain that forms the foundation of 
the spatial effects under investigation is not a flat surface. Spatial objects are frequently separated by barriers that 
may be natural, political, or conceptual as shown in figure 1.8. Therefore, distance in spatial statistics is a more 
complicated concept than simply the length of a line connecting two objects. 
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Figure 1.8 

Straight-line distance may not be the best measure of the proximity between geographic objects. In figure 1.9, 
lines connect locations into pairs that are all about an equal distance apart. Add the geographic layers in figure 1.9 
(right), and it is easy to see that many pairs cross bodies of water. Therefore, if the points represent animals that 
do not swim, then the lines that cross water do not represent true shortest distances between those points for 
those animals.

Figure 1.9 

Figure 1.10 at left shows the straight-line (Euclidean) distance to the closest measurement point for each cell of 
the 285-by-253 grid with a cell size of 180 meters. This map of distances can be compared to a distance map in 
figure 1.10 at right, which is the least accumulative cost distance over a cost surface calculated as a sum of three 
grids: 

1. Cost value equals 1 + elevation/(lowest elevation value). 

2. Cost value equals 5 if cell intersects stream and 0 otherwise. 

3. Cost value equals 20 if cell intersects lake and 0 otherwise. 
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The points’ density will be very different if different distance metrics are used (see example in chapter 13). 

 

Figure 1.10 

Figure 1.11 shows different interpolations of ozone concentration. Figure 1.11 at left, which shows the predicted 
concentration of ozone in California, neglects to account for the effects of mountains. But since mountains are as 
effective a barrier to industrial ozone as water is to nonswimmers, taking the effect of the mountains into  

consideration gives a more realistic picture of ozone distribution, as shown in figure 1.11 at right, which depicts it 
traveling up gorges, for instance. 

  
From California Ambient Air Quality Data CD, 1980-2000, December 2000.  

Courtesy of The California Air Resources Board, Planning and Technical Support Division, Air Quality Data Branch. 

Figure 1.11 

The distance between spatial objects with nonzero areas cannot be defined uniquely. Figure 1.12 shows zip 
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polygons in the Bay Area of Northern California. There are infinitely many ways to specify distances between 
polygons, which, for instance, can be based on the travel time between randomly selected points inside polygons. 

 

Figure 1.12 

AN EXAMPLE OF STATISTICAL SMOOTHING OF REGIONAL DATA 

The ease of spatial visualization provided by GIS entices users to rely on visual comparison between maps for 
reaching conclusions. For example, an impression that frequently arises in disease mapping is the apparent 
clustering of disease cases on a map. Apparent clustering tempts the researcher to look for an environmental 
cause for the disease outbreak, while this clustering may simply be caused by mapping the raw number of disease 
cases instead of rates (the number of cases per capita). 

It is also easy to produce misleading impressions from data points just by classifying them for mapping and 
manipulating the color palette of the map. Figure 1.13 shows the average family size in United States counties 
using two widely used classification schemes: natural breaks (top) and quantiles (bottom). The bottom map 
suggests that most large families prefer to live near the borders, while the top map suggests a more homogeneous 
distribution. 

The population in the bottom map appears to be higher, too. Which map is correct? Which map more closely 
corresponds to reality, and how can that be determined? Answering these questions requires understanding the 
data. 
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Figure 1.13 

Data in their aggregated form exist not by their nature, but by the way they are assembled into regional 
subdivisions. Figure 1.14 at left shows hypothetical locations of families of different sizes, stars, and the 
administrative borders. The distribution of family sizes is affected by the administrative divisions within which the 
average family size is quantified. But, the idea of family size distribution has a continuous component as shown in 
figure 1.14 at right, because family sizes are likely to grade into each other, however steeply. 

 

 

 

 

 

 

Figure 1.14 

Averages for administrative subdivisions are calculated simply by counting the number of events, in this case the 
number of people (stars in figure 1.15). This answers the question of which choropleth map of average family size 



Spatial Statistical Data Analysis for GIS Users    Page 31 

is better: the map that is closer to the population density map (figure 1.14 at right) because a spatial point pattern 
intensity surface should be related to counts aggregated over regions. 

 

 
 
 

 

 
Figure 1.15 

The intensity map, in other words, the map of the population distribution, is usually unknown. Smoothing 
techniques try to approximate it by averaging values in each county with those of the neighboring counties (figure 
1.16). 

 

 

 

Figure 1.16 

In this example, data smoothing makes sense because the average family size in a given county does not 
completely characterize the distribution of the variable within that county. For example, figure 1.17 shows the 
distribution of family size in block groups in the part of the city of Redlands, California. Family size variation is 
large, and values between the first and third data quartiles (3.17 and 3.91 people per family, respectively) have 
approximately the same frequency of appearance as the mean family size value, 3.54. In other words, the number 
of families with three and four members is approximately the same. The uncertainty of the family size is described 
by standard deviation. If standard deviation of the family size for each administrative unit is available, a pair of 
maps of the average family size and its standard deviation is much more informative than the mean family size 
map alone. 
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Figure 1.17 

Figure 1.18 shows a smoothed map of average family size. A new value is predicted in each county, using values in 
the neighboring counties and the distance between county centroids (note that more accurate smoothing can be 
done using areal interpolation model, see chapter 12). After smoothing, it is easier to see which areas have a large 
family size and which have a small family size. 

 
Figure 1.18 

But the modeling job is not over until a determination is made of how much uncertainty is associated with the 
smoothing just accomplished. Figure 1.19 shows that the uncertainty associated with data smoothing is small in 
counties with little migration and a homogeneous population, shown in blue. This estimated uncertainty 
substitutes for the unknown standard deviation of the family size in U.S. counties. 
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Figure 1.19 

The 95-percent prediction interval for the displayed values of the family size in figures 1.18 and 1.19 can be 
estimated as 

Prediction plus or minus two prediction errors 

For example, in the southern states, the family size value is approximately 3.0 ± 0.4. 

This estimation (it is no more than that) of data uncertainty will have to be taken into account when family size is 
used in further calculations. Each operation on family size values, whether overlay or buffering or other, will 
increase the uncertainty.  

ASSIGNMENT 

 INVESTIGATE HOW A SEMIVARIOGRAM CAN CAPTURE SPATIAL DEPENDENCE. 

Statistical data interpolation, also called kriging, is based on the statistical description of the data using a 
semivariogram. Combinations of playing cards can be used to illustrate how a semivariogram captures spatial 
dependence (see glossary for statistical terminology explanations). The initial order of a new partial deck of cards is 
shown in figure 1.20. 

 
Figure 1.20 
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The suits can be ignored and only the value of each card considered. The semivariogram can be constructed 
assuming that the center of a card represents its location and that distances between neighboring cards in 
horizontal and vertical directions are equal to one, as shown in the graph in the top left part of the dialog box in 
figure 1.21. 

 

Figure 1.21 

The semivariogram γ(h) is constructed by calculating half the average squared difference of the values Z(si) of all 

the pairs of cards separated by a given distance. The resulting quantity is gamma (h) (in Greek). Gamma (h) is 
plotted on the y-axis against the separation distance, h, known as the lag distance. In mathematical notation  

∑  −⋅
⋅

=
h lagsimilar  with j)(i, pairs ofset 

2)]()([
)pairs ofnumber (2

1)( ji ZZh ssγ  

For example, the semivariogram value in blue circle in figure 1.21 is calculated using the 10 pairs connected by the 
light blue lines. 

The differences between the values of points separated by small distances are expected to be smaller than the 
differences between points separated by greater distances if data are spatially correlated. The pink line is an 
approximation of the semivariogram values for the distances between pairs of locations. Many functions can be 
used as semivariogram models. One of them, Gaussian, is used in figure 1.21.  

There is a good visual fit between the model and the semivariogram points for the distances smaller than 4. 
However, the Gaussian semivariogram model cannot describe data with a strong trend at greater distances. 

The amount of change in the value with movement from the value at a known point to the unsampled location is 
governed by the distance dependency explicitly shown by the semivariogram model. Weights of the 
measurements separated from the prediction location by a distance greater than 3 are small, less than 1 percent 
(in Geostatistical Analyst, weights are provided by the Searching Neighborhood dialog box next to the 
Semivariogram Modeling dialog box), and reliable prediction in the extent of the cards with the Gaussian 
semivariogram shown in figure 1.21 is possible. 

In the example shown in figure 1.22, four cards are removed from the array, and the estimated Gaussian 
semivariogram is used to predict the values at those locations. The data values are displayed in black, and 
predicted values are given in pink. The resulting surface indicates that the predictions are very good. 
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Figure 1.22 

Removing an arbitrary number of cards from the middle of the deck and putting them at the end results in the 
following sequence, figure 1.23. 

 

Figure 1.23 

The semivariogram based on the shifted data in figure 1.24 still shows spatial dependence, and small data 
semivariogram values are typically at small distances between the pairs of points rather than at greater distances, 
but not as much as in the case of the cards prior to reordering. 
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Figure 1.24 

The kriging predictions (figure 1.25) using the semivariogram in figure 1.24 indicate that two of the four 
predictions (4.28 and 5.28) are not accurate. 

 

Figure 1.25 

Continuing the exercise, the cards are shuffled twice more, and a new semivariogram is calculated. The data in the 
left part of figure 1.26 were used to create the semivariogram in the right part. It can be seen that the spatial 
dependence has almost disappeared: the semivariogram model is close to the horizontal line with almost the same 
data variability at all distances between data pairs. 
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Figure 1.26 

Kriging using the semivariogram shown in figure 1.26 results in weak predictions at three out of four locations 
(figure 1.27). 

 
Figure 1.27 

In summary, when strong spatial correlation exists, the semivariogram can help to reconstruct missed values, and 
kriging makes reliable predictions at the unsampled locations. If data are not spatially correlated, there is no way 
to predict the value between measurement locations other than assigning an arithmetical mean to all prediction 
locations. As the data correlation gets stronger, fewer samples are needed for reliable data prediction and 
interpolation. 

With Geostatistical Analyst, repeat this exercise using a different number of initially ordered data, several 
reordering scenarios, and various locations of removed data. 
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FURTHER READING  

1. De Veaux, R., P. Velleman, D. Bock (2007) Stats: Data and Models. Second Edition. Addison Wesley, 800 pp. 

This book can be recommended for readers with no knowledge of statistics. The book focuses on statistical 
thinking, highlighting how statistics helps us to understand the world. It is organized into short chapters that focus 
on one topic at a time. Each chapter includes a discussion of common misuses, misapplications, and 
misunderstanding of statistics to help students recognize and avoid them.  

2. Krivoruchko, K., and C. A. Gotway. 2002. “Expanding the ‘S’ in GIS: Incorporating Spatial Statistics in GIS.” 

It is available from Esri online at 
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